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Abstract. An approach to the analysis and design of a
bidirectional DC power converter for the cell voltage balancing 
control of a series connected lithium-ion battery string is 
presented in this paper. The proposed Cell Balancing Circuit 
(CBC) is designed to transfer the energy from the fully charged 
battery cell to the weakest one using a switch mode power 
converter operation. This operation maintains cell batteries at the 
same State-Of-Charge (SOC) and voltage range. Unlike previous 
battery balancing circuits, the balancing method uses only one 
magnetic component, resulting small size system. Simulation and 
experimental results show that the proposed cell balancing 
method can not only enhance the bidirectional battery 
equalization performance, but can also reduce the switching loss 
during the equalization period. Experiment results are provided to 
verify the operating principle of the proposed balancing method. 
Specific conditions of experiments are used to reproduce 
photovoltaic operations.  
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1. Introduction

Because a single battery cell presents low nominal 
voltage (limited due to the active materials chemistry), 
battery cells are usually connected in series to be 
employed in many applications, such as electric vehicles 
(EV), hybrid electric vehicles (HEV), photovoltaic (PV) 
systems or telecommunication battery energy systems. 
Unbalanced cell voltage within a series string can be 
attributed to the differences in the cell’s internal resistance, 
unbalanced State-Of-Charge (SOC) between cells, 
degradation and the ambient temperature gradients during 
charging and discharging [1]-[2]. Voltage monitoring and 
current diversion equalization circuits and Battery 
Management Systems (BMS) have been developed to 

prevent unbalances during charging and discharging in a 
series connected battery cells [3]. This repeated charge 
and discharge phenomenon causes a cell mismatch 
problem because lithium-ion batteries have inevitable 
differences in chemical and electrical characteristics from 
manufacturing, and accelerate asymmetrical cell 
degradation with aging [4]. The problem is that when 
these imbalanced batteries are left in use without any 
control, such as cell balancing, the energy storage 
capacity decreases severely, and in the worst case, there 
may be an explosion or fire. Lithium-ion batteries require 
careful management, particularly with regard to 
overcharge and undercharge problems. Thus, charge 
equalization for a series connected battery string is 
necessary to prevent these phenomena and extend the 
useful lifetime. Numerous charge balancing circuits have 
been presented and well summarized in [5]. They can be 
classified into two categories, dissipative and non-
dissipative. Example of dissipative balancing method 
could be based on shunt resistive method. It is the 
simplest and cheapest cell balancing. This method could 
be operated continuously on each cell independently but 
this method presents high energy losses, which reduces 
the energy efficiency. Example of a non-dissipative 
method could be based on multiple winding transformers 
with advantage of being an effective low-cost 
equalization, but it is difficult to implement multiple 
windings in a single transformer [6]. In a dedicated DC 
converter approach, a very low voltage stress can be 
achieved because the use of a bidirectional DC converter, 
but there is a high complexity of controlling the 
bidirectional DC power converter [7]. Another non 
dissipative method could be based on a switched 
capacitor applied to every two adjacent cells [8]. This 
method can balance cells in a short time, but it requires a 
large number of switches, so lots of energy is dissipated 
in the switches and capacitor. The main contribution of 
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this paper is the use of an active cell balancing method in 
the design and analysis of the individual cell balancing 
control of the lithium-ion battery strings used in 
photovoltaic applications. A specific charge controller has 
been inserted in the conversion chain to optimize the 
charge of the battery pack and presented in section II. In 
section III, a brief description of a shunt balancing method 
based on dissipative resistance is exposed. In section IV, 
the principle of the active cell balancing method is 
presented using micro converters buck-boost. Two 
designed cases are used to demonstrate the performance in 
the proposed active balancing method for reducing losses 
and increasing the equalization efficiency and battery 
string capacity. Both balancing method will be compared 
applying PV production profiles. Analysis of losses is also 
included to evaluate performances of each method. In 
section IV, two practical designs example and 
experimental results are presented to compare both 
balancing methods in specific operation conditions. 
 
2. System configuration 
 
A. Architecture Specifications 
 
To improve the photovoltaic conversion chain, it is usually 
used DC power converters associated with a MPPT control 
optimizing the research of the Maximum Power Point 
(MPP) delivered by the PV generator. Coupling with a 
controlled storage system, the PV conversion chain will be 
obviously more efficient. Figure 1 describes the functional 
architecture of the power architecture module with all 
subsystems included.  

The architecture of the system studied includes a PV 
generator, a storage system and an optimal conversion 
chain including MPPT and electronic management system 
with different electrical functions to be connected to a load 
with a maximum security. The principal function of this 
architecture is to transfer the Maximum Power from a PV 
panel and store and/or restitute the energy to the load. For 
that, an electronic management system was designed and 
implemented on a microcontroller to control all 
subsystems [9]. The DC power converter connected to the 
PV generator is associated with a Maximum Power Point 
Tracking (MPPT) optimizing the research of the 
Maximum Power delivered by the PV generator. The non-
reversibility of this static converter will protect the panel 
from a possible battery discharge of electrical current. 
Electronic management system and energy transfer 
regulator will ensure the management of the battery, 
protection and control system included in the power 
converter. 
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Fig. 1. Functional power architecture module. 

Control algorithms would be adapted to the lithium-
ion electrochemistry used (i.e. lithium nickel oxide). The 
developed operating system takes into consideration 
several characteristics of the individual battery cells and 
manages, depending on the load profile, the energy flow 
which has to be controlled. 

 
B. Example of Lithium-ion battery Specifications 
 

Actual active materials for lithium-ion batteries 
present excellent properties of cyclability and lifetime. 
Research has been based on the storage system 
adaptation to improve efficiency. A conventional couple 
of electrodes, natural graphite (LiC6) for the negative 
electrode and lithium nickel oxide (Li(Ni,Co,Al)O2) for 
the positive electrode, has been studied and integrated to 
the power module. This electrochemical system has 
demonstrated in cylindrical design cell its high 
cyclability (over 4000 cycles at 80% Depth-Of-
Discharge) and its long lifetime (8 years without 
demonstrating that the system has been aged 
significantly) [10]. The batteries used in this power 
module consist of stacks of 3.6V, 10 Amps Hour (Ah) Li-
ion cells. The battery pack contains six cells in series, a 
nominal voltage of 21.6V. Curves of constant current 
charge and discharge at 25°C are represented in Figure 2. 
 

 
        a) 

 
         b) 

 
Fig. 2. Battery cell charging (a) and discharging (b) voltage 

curves at constant current C/10, 25°C. 
 

Observing the slope of the charge and discharge curves 
for this kind of lithium-ion technology, we can easily 
estimate the State-Of-Charge of battery cells. 
 
C. Context of the study 
 

Researches of new topologies of power converters for 
battery management have been done in the Laboratory 
for Analysis and Architecture of Systems (LAAS) and 
specifically for renewable energy applications. Two cell 
balancing method have been elaborated to compare 
performances in different working conditions. The first 
solution developed is a classical structure, the shunt 
balancing method, which will be our reference. The 
second solution is based on micro converters and tries to 
improve efficiency with same performances. 
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boost micro converter for n cell in series. 

 
Micro converters will be controlled in voltage 

according to the system, protections and the battery cells. 
A SPI bus is used for the all dialogues between µC and 
measurement devices. MOSFETs are most of the time high 
side driven. 
For example with two adjacent cells, if the cell noted Cell4 
is fully charged and the Cell3 is the lowest charged when 
charging process, the current flows through the micro 
converter following the path as shown in Figure 6. 
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Fig. 6. Equivalent circuit of the buck-boost converter when 
energy transfers between Cell4 and Cell3. 

 
During cON TT α= (MnC4D and M3C4D => ON) the quantity 
of charge which is transferred from battery Cell4 to the 
inductor L is:  
 

(2) 
 

 
During ( ) cOFF T1T α−= (M3C2D and M3C4D => ON) the 
quantity of charge which is transferred from inductor to 
battery Cell3 is: 

 
(3) 

In the same way, the current passes of charging battery 
and discharging battery can be selected by controlling the 
gate signal of switches (MOSFETs). When two or more 
battery cells are fully charged, those battery cells have to 
be discharged turn and turn about to avoid overcharging.  
 
Table I shows an example, for 4 cells in series, different 
possible switching (actions on Xn and Yn) and the inputs 
of decoder controlled by the microcontroller. 
 

Table I. Switching actions on Xn and Yn 
. 

 
 Cell1>Cell2 Cell1>Cell3 Cell1>Cell4 Cell2>Cell1 Cell2>Cell3 Cell2>Cell4

TON=αTc X1-Y0 X1-Y0 X1-Y0 X2-Y1 X2-Y1 X2-Y1 

TOFF=Tc-TON X1-Y2 X2-Y3 X3-Y4 X0-Y1 X2-Y3 X3-Y4 

 
 Cell3>Cell1 Cell3>Cell2 Cell3>Cell4 Cell4>Cell1 Cell4>Cell2 Cell4>Cell3

TON=αTc X3-Y2 X3-Y2 X3-Y2 X4-Y3 X4-Y3 X4-Y3 

TOFF=Tc-TON X0-Y1 X1-Y2 X3-Y4 X0-Y1 X1-Y2 X2-Y3 

 
The control of micro converters is realized by a 
conventional voltage regulation. The operating time of 
the converter are adjusted for balancing needs to maintain 
permanently a maximum deviation of 20mV between 
each cell. Using this method and following figure 5, we 
can generalized to any cells of the battery pack through 
the command of MOSFETs (figure 7). 
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 Fig. 7. Equivalent circuit of the buck-boost converter when 
energy transfers between Cell4 and Cell3. 

 
Estimated losses for this active cell balancing method can 
be evaluated by the following equation: 
 

(4) 
 

With N the number of micro converters involved in the 
balancing action where two cells are included at every 
stage of balancing ; Rdson (Ω), the conduction resistance 
of the MOSFET; Vf (V), the diode threshold voltage, and 
ri (Ω), the winding resistance of the inductor L. 
 
To obtain efficient results it is necessary to use voltage 
sensors with high accuracy allowing optimal control of 
balancing actions. A LTC6802 is used to have a 
maximum of voltage accuracy. A specific high 
bootstrapped side control has been implemented to 
control MOSFETs. Figure 8 shows the experimental 
prototype used to demonstrate the performance of the 
proposed active balancing method in PV application. 
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Fig. 13. Experiment of the charge of six lithium-ion cell in series 
with the active balancing method.              

Test conditions: Sunny PV profile at 25°C. 

Fig. 14. Experiment of the charge of six lithium-ion cell in series 
with the active balancing method.       

Test conditions: Cloudy PV profile at 25°C. 

Fig. 15. Final results of ΔVCellmax applying or not active cell 
balancing for different PV Profiles. 

6. Conclusion

An intelligent cell balancing circuit was proposed for 
bidirectional battery equalization of a series connected 
lithium-ion battery string. A buck-boost converter was 
employed to improve the dynamic equalization 
performance, and to guarantee that each cell voltage of 
the lithium-ion battery string would be operated within 
the safety region during the cell balancing period. The 
advantages of the proposed intelligent battery 
equalization circuit are summarized as follows. 

The proposed buck-boost converter topology
accelerates the equalizing process. The equalization
time is abbreviated and continuous compared with
the conventional shunt balancing method under the
same equalization conditions.
The bidirectional cell balancing control circuit can
be used in the charging or discharging state to
extend lifetime of lithium-ion battery cells used in
photovoltaic applications.

In system design of a practical lithium-ion based 
battery pack, the scope of cell imbalancing effects in the 
battery string applications must be evaluated comparing 
various solutions for cell balancing and execution time it 
requires in the charge process.  
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