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Abstract  
 
It is reasonable to suppose that not every electric car will be 
charged at home sockets: some vehicle owners will eventually 
use charging stations. There are two options for such a charging 
station: it can be built either at the parking lots of shopping 
centers, or along highways, similar to the gas stations of today.  
These charging stations of course require additional feed-in of 
electric energy. To calculate the necessary capacity of such 
infeed one has to know the main operating parameters of the 
charging stations, such as the number of charging sockets or the 
parking capacity of the station. Another important parameter is 
the time needed to charge the battery. People do not like waiting, 
so a charging station must be designed taking these constraints 
into consideration.  
In this article the mathematical model of charging stations is 
proposed, followed by the results of the numerical simulations 
based on stochastic modelling of EV charging. 
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1. Introduction 
 
We can expect a second renaissance of electric vehicles 
(EV) in the near future: oil prices are high and there are 
several EU directives that aim to develop and create an 
intelligent and sustainable transportation in the near future. 
Electric cars fit perfectly into this scope. 
Electric cars must be recharged, just as the cars with 
internal combustion engines must be refuelled. An 
adequate way of recharging a car is charging it at home or 
at the street where the car is parked. But these are not the 
only options for this process: when going for a trip at 
weekends or when travelling far, alternatives of the gas 
stations are needed. These are the charging stations, placed 
by motorways and highways, where vehicle owners can 
recharge their cars’ batteries and have a rest meanwhile.  
Another place where a great number of charging sockets 
could be concentrated is the parking lots of supermarkets. 
People usually spend more than an hour doing their 
shopping and it is reasonable to suppose that meanwhile 
they would want to have their cars charged.  
Of course these stations and parking lots have limited 
capacity, so when designing such a station one must take 

every constraint into consideration: the amount of 
expected electric power, the number of charging sockets, 
the area of the parking lot, etc.  
To tell when a single car will come to a charging station 
is nearly impossible, but when investigating a large 
number of cars we can make predictions based on 
probability theory and so have an idea about the 
parameters needed to construct such a station. 
 
2.  Basics of queueing theory 
 
Queueing is an unpleasant event we have to face every 
day: we queue in the shop, at the bank, etc. But not only 
us, human beings queue: processes at an internet server, 
phone call requests, etc. also have to wait, hence queue. 
And what we intend to investigate here: electric cars 
arriving to a charging station might as well have to wait.  
 
The theory of queues have their own mathematical 
representation: queueing theory. Queueing theory is a 
part of dynamic system theory and can be divided into 
two main parts: deterministic and stochastic processes 
[1]. 

• The first class of dynamic processes are the 
deterministic processes. We have a certain knowledge 
about the process, we know when the process is to be 
served and the capacity it requires. 

• The second class of dynamic processes are the 
stochastic processes. We do not have information about 
the times when the request to serve a process arrives, nor 
do we have information about the capacity it requires to 
serve such a request. Most of the processes that occur in 
real life are from this class. 
 
We can further divide the class of stochastic processes 
into sub-classes: 

• stationary processes 
• Markov processes 
• birth-death processes 
• semi-Markov processes 
• Poisson processes 
• etc. 

 
Mathematically we can use a birth-death process when 
we would like to model a queue. During a birth-death 
process a new element is “born” (in other words a request 
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appears in the system) in a population of i members with 

the probability of ti ⋅λ  within a short t time interval and 

an existing element “dies” (or a request is served) with the 

probability of ti ⋅µ . The birth-death process is in fact a 

Markov-chain that describes the evolution of a certain 
population [2]. A Markov-chain can be described as a 
random walk on an S state-space. If there is a step to the i th 
state, then it will stay there for a random time interval. The 
duration of this time interval however follows an 
exponential distribution with a parameter λ(i). After this it 
transitions from the i th state to the j th state. The probability 
of this transition is Qij, where Q is the transition 
probability matrix. The exact definition is the following 
[3]: 
Definition: The X(t), 0≥t  stochastic process on the S 
state-space is a continuous time Markov-chain if for every 

n and s,t>0, tttt n <<< −110 K  and i, j, i0, i1, …,in-1
∈S 

states the following equation is true: 
( ) ( ) ( )
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This equation means – just as with discrete time Markov-

chains – that if we know the present ( ) itX =  state of the 

process, the future ( ) jstX =+  state is independent 

from the ( ) ( ) ( ) 001111 ,,, itXitXitX nn === −− K  past 

of the process. 
 
Considering EVs, the state space can be partitioned as 
follows: 

• a car arrives to charge 
• a car is charged, so the request is served 

 
It can easily happen that an incoming request (eg. a car 
arriving to charge its battery) cannot be served because all 
servers (charging slots) are busy. This means that the 
request – in our case the EV – has to wait. We present a 
method to calculate the parameters that are required to 
design a charging station where cars do not have to wait. 
 
In the next section we are going to investigate continuous 
time Markov-chains, because the whole charging process 
can be modelled as a Poisson process. A Poisson process is 
the series of births in a pure birth process with constant λ 
parameter. Under such conditions we can consider the 
Poisson process as arrival of requests in a system [1], [5]. 
It can be mathematically proved [1], [5] that the 

distribution of arrival times are exponential and 
independent from each other.  
A Poisson process is a good approximation of processes 
where the following are true: 

• the number of entities is great 
• a single entity does not effect the system 

significantly 
• entities are independent from each other 

 
An electric vehicle’s power demand is relatively small 
compared to the loading of the distribution grid, the 
arrival time of each car and so the beginning of the 
charging is independent from the others: these mean that 
EV charging can be modelled as a Poisson process [6].  
 
3. Modelling of EV charging at a charging 

station with the M/M/c/N model 
 
The mathematical method described in Section 2. can be 
used to model EV charging at charging stations. In this 
section we are going to present the mathematical method 
of modelling EV charging through numerical examples. 
 
The modelling uses the M/M/c/N model [7], [9], where 
the letters mean the following: 

• the first M (Markov): Markovian (exponential) 
interarrival time distribution 

• the second M (Markov): Markovian 
(exponential) service time distribution 

• c: the number of servers (here the number of 
charging sockets) 

• N: the system capacity (here the number of cars 
that can be parked at the station) 

 
Let us denote the intensity of the arrival of cars with λ 
and the intensity of serving the requests (so to charge a 
car) with µ. The flow diagram of the M/M/c/N model is 
then the following: 

 
Fig. 1. Flow diagram of the M/M/c/N model 
 
Now we can construct the transition probability matrix Q. 
 
To obtain the stationary distributions we have to solve 

the following set of equations: 
TTTQ 0=⋅π , where π 

is the row vector that contains 
the stationary distributions. 
By solving this set of 
equations and denoting the 
occupation rate with 

µ
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To solve these equations we consider ∑
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Using this formula we can also obtain the mean queue 
lenght: 

( ) ( )∑
=

⋅−=
N

ck
kq ckLE π , 

where πk  is the the kth stationary distribution. After 
substituting the proper values and simplification of the 
equation we obtain  
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as the mean queue length and by Little’s law we also get a 
formula for mean waiting time: 
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as mean waiting time [1], [2], [3], [4], [5], [6]. 
 
4. Numerical results obtained from the 

proposed model 
 
The obtained equations allow us to make investigations by 
several different boundary conditions in how the changing 
of parameters affect the effectiveness of the service (eg. 
battery charging). This effectiveness is characterized by 
mean queue length and mean waiting time, so we can 
easily use our equations. We have implemented these 
equations in Excel Visual Basic and conducted several 
computations. We have used [7] and [8] as basics to 
construct these examples. 
 
First, we have to set the parameters: 
1. The first example models a smaller charging station 

where fast charging is possible. We analyze this kind 
of charging station in details because we can suspect 
that it is more vulnerable to the changing of 
parameters. This kind of station is a good model for 
stations along a motorway, where people do not want 
to wait long. The defined parameters are the 
following: 
• λ=1/3 [1/min]: arrival intensity 
• µ=1/50 [1/min]: service intensity 
• c=20 number of charging sockets 
• N=50 number of parking slots at the station 

(including sockets) 
2. The second example models a larger charging station 

where only slow charging is allowed. This can be the 
model of a charging station in a supermarket, where 
people would spend more than an hour. This charging 
station is characterised by the following parameters: 

• λ=1/3 [1/min]: arrival inenstiy 
• µ=1/240 [1/min]: service intensity 
• c=100 number of charging sockets 
• N=150 number of parking slots at the station 

(including sockets) 
 
During the calculations we keep some of these 
parameters constant, but others we will vary and 
investigate how this change affects the system parameters 
(mean queue length and mean waiting time).  
We investigate worst case scenarios which means that we 
consider batteries to be fully depleted. Of course this is 
not the case in reality, but modelling the state of charge 
of batteries would be too complex and probably would be 
an understatement. 
 
4.1.Probability of not serving a request 
 
We cannot serve a request, so we have to refuse it to 
enter the queue if the system is full, so if there is no free 
capacity. This means that the station has no free parking 
space, so N-n=0 which means n=N. All we need to do 
then to obtain the probability that we do not serve an 
incoming request is to calculate the stationary 
distribution πN: 

Probability of not serving a request as a 
function of system capacity
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Fig. 2. Probability of not serving an arriving car as a 
function of system capacity (smaller station) 

 

Probability of not serving a car as a function 
of the number of chargers
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Fig. 3. Probability of not serving a car as a function of 
charging slots (smaller station) 
 
The figures conclude that by increasing the number of 
servers and system capacity we can serve an incoming 
request safer. We can also observe that this probability 
reaches 0 after a certain value of charging slots (in fact, 
due to the eqations it never really reaches 0, but gets 
very-very close to it). This means that we should not 
have more charging slots than this determined value 
because we could not achieve anything with them. 
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4.2. Mean queue lenght 
 
It is usually not an easy task to find the distribution 
functions of the system parameters so we only find their 
mean values [5]. 

Mean queue length as a function of system 
capacity
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Fig. 4. Mean queue length as a function of the system 
capacity (smaller station) 
 
Fig. 4. illustrates the mean queue lenght as a function of 
system capacity. When we increase the system capacity, 
the length of the queue would increase only slowly, and 
then becomes constant. We can state that the system 
capacity does not affect queues seriously. 

Mean queue length as a function of the 
number of chargers
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Fig. 5. Mean queue lenght as a function of charging slots 
(smaller station) 
 
Fig. 5. represents the mean queue lenght as a function of 
the charging slots. When there are too few charging slots 
the requests cannot be served, so long queues evolve. By 
increasing the number of charging slots the queue lenght 
decreases and eventually there would be no queue if the 
number of charging slots is set properly. 
 
Let us now investigate how the time needed to charge a 
battery affects the queue lenght: 

Mean queue length as a function of charging 
time
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Fig. 6. Mean queue lenght as a function of charging time 
(smaller station) 

 
We can state that the charging time has a greater effect 
on system performance than the parameters we have 
investigated so far. We can see on Fig. 6. that until a 
certain value of charging time there is practically no 
queue, but this queue evolves very fast as we increase the 
charging time. This fact concludes that the system is very 
sensitive to battery charging times and if we would like 
to design a charging station first of all we have to take 
this parameter into account. 
 
4.3.Mean waiting time 
 
Mean waiting time can be calculated from the mean 
queue length by using Little’s law. We obtain the 
following results: 

Mean waiting time as a function of system 
capacity
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Fig. 7. Mean waiting time as a function of system 
capacity (smaller station) 
 
We can see that no matter how many parking slots are 
there in the charging station we do not have to wait very 
long. We have to mention that this waiting time contains 
only the waiting time that we have to wait when there is 
no free charging slot. The time that is required to charge 
the battery is counted out of this value! 

Mean waiting time as a function of the 
number of chargers
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Fig. 8. Mean waiting time as a function of charging 
sockets (smaller station) 
 
On Fig. 8. we can see that how the number of charging 
sockets affect the waiting time. If we have too few 
sockets, cars would have to wait for an unacceptably long 
time.  
 
Finally we investigate the effect of battery charging time 
on mean waiting time: 
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Mean waiting time as a function of charging 
time
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Fig. 9. Mean waiting time as a function of battery 
charging time (smaller station) 
 
This result is very similar to the one we have seen on Fig. 
6.: battery charging time has a serious effect on system 
performance. 
 
4.4. Rejection of arriving cars 
 
By multiplying the arrival intensity with the probability of 

not serving a car ( Nπλ ⋅ ) we can obtain the number of 

rejected cars per hour. We have seen that the parameter 
that affects system performance the most is charging time, 
so we present here the diagram that shows this function: 

Number of rejected cars per hour as a 
function of charging time
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Fig. 10. Number of rejected cars as a function of charging 
time (smaller station) 
 
This diagram does not carry further information but helps 
in understanding the importance of investigations in this 
topic. If we cannot charge the cars within a certain time 
interval the whole concept of the charging stations is 
becoming questionable. Fig. 10 reveals that even the 
owner of the charging station can have economical 
disadvantage: the rejected cars are lost customers. 
 
4.5. Investigating the bigger charging station 
 
We have conducted several computations regarding the 
smaller charging station, but we present here only the 
functions of battery charging time for the bigger station as 
we have seen by the calculations of the smaller station that 
this parameter is the most critical. 

Probability of not serving a request as a 
function of charging time
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Fig. 11. Probability of not serving a car as a function of 
battery charging time (bigger station) 

  

Mean queue length as a function of charging 
time
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Fig. 12. Mean queue length as a function of charging 
time (bigger station) 
 

Mean waiting time as a function of charging 
time
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 Fig. 13. Mean waiting time as a function of charging 
time (bigger station) 
 
We obtained the same results as with the smaller station. 
It is obvious though that at a bigger station with slow 
charging one has to wait a lot just to get their cars 
charged. The not too short time that the charging of the 
battery requires is added to it. 
 
5. Add-in features: balking and reneging 
 
The proposed model still lacks some parameters that 
characterize natural behaviour of customers: these are 
balking and reneging:  

• If we are to enrol a long queue, we often 
reconsider our decision and leave the queue and would 
come back later or would go somewhere else. This 
behaviour is modelled by balking.  

• Reneging models the impatience of customers 
when they are already in the queue but cannot wait any 
longer and quit. 
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It is obvious though that these phenomena are not only 
affected by customer behaviour. The state of charge (SOC) 
of the batteries are dominant in deciding whether to enrol a 
queue or not. 
So when determining the balking and reneging parameters 
we have to take battery SOC into account as well.  
1. Balking can be modelled with a parameter bi which 

modifies arrival intensity: 





≥⋅
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=
− cnwhenb

cnuntil
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n ,
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 where bn-c is the balking parameter. 
The flow diagram is then: 

 
Fig. 14. Flow diagram of M/M/c/N model with balking 
 
We can calculate the desired system parameters like we 
did in the case without balking and we obtain 
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which we cannot express in a closed form. 
 
2. We can model reneging with balking, so we use the 

previously defined bi balking parameter and we also 
introduce a υi reneging parameter which modifies the 
serving intensity. The flow diagram is then: 

 
Fig. 15. Flow diagram of M/M/c/N model with balking and 
reneging 
 
We can calculate the system parameters again like we did 
before but we cannot express it in a closed form. To solve 
the cases with balking and reneging we have to use 
iterative solution methods. 
 
We did not take these effects into account as they would 
make modelling more complex yet they don’t affect the 
results seriously. 
 
6.  Conclusions 
 
In this paper we have modelled the electric car charging 
stations using mathematical models. Investigations aimed 
to determine how system parameters (queue length, 
waiting time) depend on various designing parameters.  
We have conducted computations regarding two different 
types of charging stations: a smaller one with the 
possibility of fast charging and a bigger one where slow 
charging is also an option. 
We can conclude our results as follows: 

• The station’s parameters (number of charging 
slots, parking space) does not affect seriously the system 
parameters. It is necessary to implement enough chargers 
or else customers will have to wait very long. 

• Charging time has a serious effect on system 
parameters. The computation presented in this paper 
aimed to establish a method to investigate this effect. 

• For bigger stations that can be built for example 
in a supermarket, charging time becomes important only 
at extremely long charging times. This is good for the 
system design as people spend more than one hour in a 
supermarket so we can implement slow charging there. 

• However for smaller stations battery charging 
time is a more serious issue as long waiting times are 
unacceptable for customers. Considering even fast 
charging we can conclude that with the accessible 
batteries of today it would take too long to charge them at 
smaller stations and customers would have to wait even 
too long to be served. The smaller the station is, the faster 
we must charge the batteries. So we can state that these 
smaller stations are not yet ready for implementation: we 
have to wait until we can charge the batteries faster than 
we can now. 
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