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Abstract. In this paper, the voltage profile in the Japanese 
distribution system with large penetration of photovoltaics 
(PVs) is estimated probabilistically by Monte-Carlo simulation. 
PV outputs and load demands are given as probability 
distributions with certain correlation factors. 
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1. Introduction 
 
In recent years, issues of global warming and fossil fuel 
depletion have become serious, and PV attracts attention. 
When a large amount of PVs are introduced in the 
distribution network, the network voltage may rise by a 
reverse power flow. If the voltage deviates from the 
allowable voltage range ( V6101±  in Japan), generation 
opportunity of PV may be lost when a PV system is 
disconnected by PCS (Power Conditioning System) 
protection due to overvoltage. 
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Fig.1. Distribution network 

 
Table I.  Setting of sending voltage 

 
Sending voltage Total demand – total PV output 

[kW] [pu] [V] 

1.03 6,800 2,400 to 3,000 

1.015 6,700 1,500 to 2,400 

1 6,600 600 to 1,500 

0.985 6,500 600 and less 

So far, the voltage profile of distribution network with 
PVs has been assessed only by the severest case that a 
large reverse power flow occurs, and not so many studies 
have explored probabilistic approaches. A probabilistic 
approach enables to efficiently install voltage controllers 
or storage batteries. 
 
In this paper, the voltage in the distribution system with 
large penetration of PVs is estimated probabilistically by 
Monte-Carlo simulation. PV outputs and demands are 
given as random number sequences following the 
designated probability distribution with correlation 
factors. 
 
2. Simulation model 
 
A. Distribution network model 
 
A distribution network in Japanese typical residential 
area is modelled with five sections. The distribution 
network model is shown in Fig. 1. The voltage is stepped 
down to 100V from 6,600V by a pole transformer 
installed at each five node, and it is supplied to customers. 
For protection from voltage deviation at lower limit in 
case that load is heavy, the tap ratio is set to lower at pole 
transformer where is far from the substation where 
network voltage is high. Otherwise, the tap ratio is set to 
higher at pole transformer where is near by the substation. 
 
Load demand of 600 kW as its capacity and PV system 
of 400 kW as its capacity are connected in each node. 
 
Sending voltage control scheme at the substation is 
generally performed in Japan. Therefore, voltage profile 
with sending voltage control is different from another 
voltage profile with sending voltage fixed as 1[pu] 
(6,600[V]). The control scheme changes sending voltage 
by total demand. In this paper, total demand is subtracted 
by total PV output. Sending voltage with sending voltage 
control scheme is shown in Table I. 
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B. PV model 
 
The random number sequences which imitate PV outputs 
variation are generated. An appearance ratio distribution 
of PV output is based on the irradiation every hour 
during the daylight hours for every season obtained from 
irradiation data-base METPV-11 of NEDO (New Energy 
and Industrial Technology Development Organization). 
The correlation factor between each PV output is set to 1 
because the studied area is assumed to be close. 
 
C. Demand model 
 
The appearance ratio distribution of demand variation is 
assumed to follow the Gamma distribution as like Fig. 2 
from some Japanese data of a power company as like Fig. 
3. 
 
The difference of distribution of demand by seasons is 
defined by the average and standard deviation of demand 
shown in Table II. 
 
As far as the correlation factor between PV output and 
demand, and the correlation factor between demands are 
concerned, very weak negative correlation is observed 
between PV output and demand in all seasons from 
limited data of PV output and demand. In winter, 
correlation factor between PV output and demand is 
lower than other seasons. On the other hand, demands 
have no correlation. 
 
3. Generation of random number sequence 
 
A. Generation of random number sequence according 

to arbitrary distribution 
 
We used the following method to generate the random 
number sequence Nyyy ,,, 21 LL (N: total simulation 

patterns) which imitates PV output variation: 
 
The step function ( )xf  in the interval [0, 1] like Fig. 4 is 

modeled on the density function of the actual PV 
appearance ratio distribution shown in Fig. 5. The 
interval [0, 1] is divided into M (total section number) 
intervals by x as follows: 
 

10 1121 =<<<<<<= ++ Mkk xxxxx LLLL            (1) 

 
The value of the k -th interval [ ]1, +kk xx  is set 

to kf ),,2,1( Mk LL= . 1l  which satisfies inequality (2) 

is found using the uniform random numbers 

Nuuu ,,, 21 LL  in interval [0, 1]: 
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Calculating the interval ],[ 111 +ll xx  that satisfies 

inequality (2), we obtain 
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Fig.2. Profile of a random number sequence of the demand in 
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Fig.3. Demand profile of low voltage in spring 
 

Table II.  Average and standard deviation  of demand in load 
capacity of a node [pu] 

 

 
Spring Summer Autumn Winter 

Average 0.12 0.12 0.10 0.15 

Standard deviation 0.06 0.07 0.06 0.09 
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Fig.4. The step function( )xf  of solar irradiation in spring 
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Fig.5. Actual solar irradiation profile in spring 
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Fig.6. Example profile of a random number sequence of PV 
output in spring 
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as the first random number. Similarly, random numbers 

Nyyy ,,, 32 LL  in interval [0, 1] are obtained. An 

example profile of a random number sequence of PV 
output is shown in Fig. 6. 
 
B. Generation of random number sequences according 

to arbitrary correlation matrices 
 
While the correlation factor between PV outputs is set to 
1 for all nodes, correlation between PV output and 
demand at each node and correlation of demands may 
change with seasons. Therefore, the random numbers of 
each node demand are replaced in the following method 
until the current correlation matrix agrees with the target 
correlation matrix.  
 

1) Set up the target correlation matrix between PV 
outputs and demands, and the target correlation 
matrix of demands as shown  in Table III. 

 
Table III.  An example of correlation matrix of demands 

(correlation factor; 0.4) 
 

  Node 1 Node 2 Node 3 Node 4 Node 5 
Node 1  1 0.4 0.4 0.4 0.4 
Node 2 0.4 1 0.4 0.4 0.4 
Node 3 0.4 0.4 1 0.4 0.4 
Node 4 0.4 0.4 0.4 1 0.4 
Node 5 0.4 0.4 0.4 0.4 1 
 

2) my  and ny in Nyyy ,,, 21 LL of the random 

number sequence are exchanged. 
Numbers m  and n  are random integers in [0, 
N]. 

3) Let p  be a random number in [0,1]. If  

p < exp(-100*c*d), the state of being exchanged 
at 2) is kept. Otherwise, the previous state is 
kept. Here, c is the number of exchange trials 
held until now. d is defined as follow equality 
(4). 
 

minmin&

&

demandsdemandPV

demandsdemandPVd

εε
εε

−−
+=

                      (4) 

  
Here, demandPV &ε  is total sum of square of the 

absolute value of each element of difference 

between current correlation matrix and target 
correlation matrix of PV and demand. demandsε  

is the same of demands. 
min& demandPVε  is the 

minimum of  demandPV &ε  in trials until now. 

mindemandsε  and 
min& demandPVε  are as well. 

4) Repeat 2) and 3) until the current correlation 
matrix converges to the target one. 

5) Replace the random numbers according to the 
procedures of 2) to 4) one by one also for 
another node demand distribution. 

 
Example correlation diagrams of generated random 
number sequences are shown in Fig. 7 and Fig. 8. 
 
4. Simulation 
 
Power flows for the N (here, N is 10,000) combinations 
of PV output and demand generated by the above method 
are calculated to determine the voltage profile. 
 
A. The conditions of simulations 
 
Simulation conditions are summarised in Table IV. 
Power flows are simulated by each season (case 1, 4,  
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Fig.7. Correlation diagrams of PV output and demand in spring 
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Fig.8. Correlation diagrams of demands in spring 

 
Table IV.  Probability of voltage violation in the distribution system 

 

 

Case Season 
Correlation factor 

Probability of voltage violation[%]   
sending voltage：controlled (constant) 

PVs PV&Demand Demands Node 3 Node 4 Node 5 
1 

Spring 1 
0 0 0.0 (12.6) 0.0 (18.5) 0.2 (20.6) 

2 0.4 0 0.0 (8.6) 0.0 (15.1) 0.0 (17.7) 
3 0 0.4 0.0 (12.7) 0.0 (18.6) 0.6 (20.8) 
4 Summer 1 0 0 0.0 (11.3) 0.0 (16.5) 0.1 (18.7) 
5 Autumn 1 0 0 0.0 (2.5) 0.0 (8.5) 0.0 (11.3) 
6 Winter 1 -0.2 0 0.0 (6.2) 0.0 (10.4) 0.0 (12.5) 
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Fig.9. Voltage profile of case 1 with constant sending voltage 
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Fig.10. Voltage profile of case 2 with constant sending voltage 
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Fig.11. Voltage profile of case 3 with constant sending voltage 
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Fig.12. Voltage profile of case 1 
with controlled sending voltage 
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Fig.13. Voltage profile of case 5 with constant sending voltage 
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Fig.14. Voltage profile of case 5  
with controlled sending voltage 

 
5, or 6) because combinations of PV output and demand 
are different in each season. 
 
PV outputs are same in each node, so correlation factor 
of PVs is set to 1. Correlation factor of demands is set to 
0 in all seasons expect winter. Only in winter, it is set to 
-0.2. Furthermore, correlation between PV and demand is 
set to 0.4 in case 2 and between demands is set to 0.4 in 
case 3 in order to estimate effect to voltage profile of 
these factors change 
 
B. The results of simulations 
 
Simulation results are shown in Fig. 9 to 14 as well as in 
Table IV. Voltage violation occurs in the cases where PV 
output is high and demand is low. The violation 
probability is higher in spring than in summer since the 
PV output is almost the same and the demand is lower.  
 
The farther from the substation, the more widely the 
voltage spreads. Therefore, voltage violation increases. 
 
The higher the correlation factor between PV output and 
demand, the less the mismatch between PV output and 
demand becomes. Therefore, voltage violation decreases. 
On the other hand, the higher the correlation factor of 
demands, the more widely the demands spread. For this 
reason, voltage violation increases as well. 
 
The sending voltage control scheme is very effective for 
decreasing the voltage violation probability.  
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5. Conclusion 
 
By giving PV outputs and demands as probability 
distributions, the voltage profile in the distribution network 
with large penetration of PVs is probabilistically evaluated.  
 
Without degradation of power quality, a larger amount of 
PVs may be introduced by assessing PV-demand and 
demand-demand correlations probabilistically than the 
conventional study only considering the severest case. 
 
Although the method of generating random number 
sequence with an arbitrary correlation factor is already 
known, there seems to be no stable method for generating 
the sequence of more than three dimensions. We need to 
grasp correlation factors more accurately to evaluate the 
profile more practically. 
 
Acknowledgement 
 
This research is partially supported by Aihara Project, the 
FIRST program from JSPS initiated by CSTP. 
 
References 
 
[1] Thomas Schreiber, Constrained Randomization of Time 
Series Data, Physical Review Letters 80, 2105-2108 (1998) 
 
[2] K. Wakimoto, Knowledge of random numbers, Morikita 
publication, (1970), (in Japanese)  

https://doi.org/10.24084/repqj11.232 109 RE&PQJ, Vol.1, No.11, March 2013




