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Abstract. Models for estimation of the cetane number of exhaust emissions. While the ignition delay can be
biodiesel from their methyl ester composition using influenced by engine type and operation conditions, the
artificial neural networks were obtained in this work. An cetane number mainly depends on the chemical
experimental data that covers 48 and 15 biodiesels in the composition of the fuel.

modeling step and validation step respectively were

taken. The selection of biodiesel samples took into Equations for predicting the cetane numbers of diesel or
account a wide range of ester compounds with different biodiesel fuels have been published [4], [6]-[12],
unsaturation characteristics and number of carbon atoms. correlating this parameter with different input factors or
A model to predict cetane number using artificial neural using different mathematical methods. Yang [6]
networks was obtained with better accuracy than 95 %. developed multiple linear correlation equations for
The best neural network for predict the cetane number predicting the Cetane Number (CN) for 12 hydrocarbons
was a backpropagation network (11:4:1) using a in order to compare with a model developed using
Conjugate Gradient Descend algorithm for the second Artificial Neural Networks (ANNS).

training step and showing 96.3 % of correlation for the
validation data and a mean absolute error of 1.5. The
proposed network is useful for prediction of the cetane
number of biodiesel in a wide range of composition but
keeping the percent of total unsaturations lower than 80
%. The use of the artificial neural networks in this case
let to study and understands the effect of individual fatty
acids in the cetane number. Therefore they can be used
for improving some biofuel properties related to the

Determination of the CN by an experimental procedure at
present is an expensive and time consuming process.
Therefore, the obtaining of accurate models to predict the
CN of biodiesel from its Fatty Acid Methyl Ester
(FAME) composition in a wide range of feedstocks
characteristics would be useful for the scientific
community.

Most of the models published for cetane number
combustion process and its efficiency. prediction were developed with Multiple Linear
Regression (MLR) techniques. That procedure requires
the user to specify a priori a mathematical model to fit
the data in order to obtain the empirical correlation. An
alternative to avoid that problem is the use of artificial
neural networks. Unlike the correlation techniques, the
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1. Introduction neural network can identify and learn the correlative
patterns between the input and output data once a training
Several physical properties of biodiesel fuels depend on set is provided.

their fatty acid ester composition [1]-[3] Also related to
the ester composition is the cetane number which is one
of the most cited indicators of diesel fuel quality [3]-[5]
and strongly influences the ignition delay phenomenon. It
is generally dependent on the composition of the fuel and
can also influence the engine stability, noise level, and

The purpose of this work is to obtain models for the
estimation of the cetane number of biodiesel from their
FAME composition using ANNs, searching for the best
suitable model to predict cetane number in the range of
biofuels studied, covering biodiesels from 63 feedstocks.
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2. Experimental set-up and procedures

48 different biodiesel fuels (including 10 pure fatty acids)
were taken from references as input and output data for
the implementation of ANNSs for predicting the cetane
number. The FAME main composition presented in
biodiesel obtained from different feedstocks is covered
by ten FAMEs selected [7], [9], [12]-[18]. The input data
covers FAME composition and the output covers the
cetane number. The validation of the models obtained
was done using a separate data set selected from
literature reports, which was not used for developing the

models. The data selected for validation covers 15
samples.

Different networks were developed using five basic
topologies, between (11:3:1) and (11:7:1). The ANNSs
used were the multilayer Perceptrons, with one hidden
layer and between 3-7 units. The inputs of the network
were ten, representing the chemical composition of 10
FAMEs and one input representing the total amount of
the other FAMEs found in the biodiesel sample. The CN
was the unique variable output of the network. A sample
of one of tested network topologies is shown in Fig.1.

Fig.1 Network (11:5:1) for the prediction of the cetane number

The chemical formula and the structure of the FAMEs on
which this research is focused are shown in Table I. The
ten FAMEs listed represent the inputs for the CN
modelling. The basic structural description for the input
FAMEs used in this work (XX:X) covers the information
about the number of carbon atoms (XX) and the number
on the right (X) represents the number of unsaturations in
the molecule.

In the training step two phases were implemented, keeping
constant the phase 1 (back propagation) for all the ANNs
evaluated. The training was developed for 10000 epochs
with a learning rate of 0.01. Linear and logistic functions
in the range of 0.9 were used as the output functions in
different networks variants.

24 different ANNs were tested for the prediction of the
CN using two phases. The phase one was a
backpropagation (BP) and the second phase was varied
among different possibilities: back propagation, conjugate
gradient descend (CGD), Levenberg-Marquardt (LM),
quick propagation (QP), quasi-Newton (QN) and Delta-
bar-Delta (DBD). The experimental data used for the
training step for the ANNs is shown in [19].

3. Results and Discussion

The search for the optimal network for predicting the CN
was based in the absolute error as the objective function in
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the process, but combining it with adequate values of the
correlation coefficient found. The results from the whole
group of ANNSs in order to find the better CN prediction
capabilities based on the FAMEs as input parameters are
shown in Table Il and Table I1I.

The results shown in Table Il are corresponding to the
trained ANNs changing the phase two among six
algorithms, varying the nodes number between 3 and 7
and using the linear output function.

Table Il shows the results for the same method but
corresponding to a logistic output function. As is shown in
Table I, the prediction is better using the ANN (11:4:1)
with a CGD algorithm. This selection is also based on the
sum of squares corresponding to the residual values on the
cetane number estimation. The lowest sum of squares was
also obtained for the CGD with a total sum of 150 for 190
using the QN algorithm. The comparison between both
ANNSs is shown in Fig.2. The line represents the ideal
values to obtain in the fit relating the actual values of
cetane number and the predicted values by the ANNSs
selected. The selection of the best ANN for CN prediction
is not based only in this plot, but also in the correlation
coefficients obtained and in their behaviour in the
validation step related to the networks prediction
capability when the validation data is processed.
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Table I. - Chemical structure and name of the FAMEs

fatty acid structure formula
lauric 12:0 Ci2H,40,
myristic 14:0 C14H20,
palmitic 16:0 C1H30,
palmitoleic 16:1 C16H3002
stearic 18:0 C1gH360,
oleic 18:1 C1gH3.0,
linoleic 18:2 C1sH3.0,
linolenic 18:3 C15H300,
eicosanoic 20:1 Cz0H350,
erucic 22:1 Cx»H40,

Table II. - Absolute errors and correlation coefficients (%) for
the CN using a linear output function

nodes BP |[CGD |DBD| LM | ON QP
3 2.7 2.4 2.4 1.9 1.9 2.1
(94.7) 1 (93.5) | (94.9) | (94.6) | (94.5) | (95.9)

4 2.9 1.6 2.3 2.4 15 2.4
(93.4) | (96.3) | (94.3) | (93.0) | (95.7) | (94.6)

5 2.3 2.6 2.0 2.3 2.1 2.1
(93.9) | (94.9) | (95.3) | (95.2) | (95.9) | (95.0)

6 2.3 2.5 2.0 1.9 2.4 1.9
(94.9) | (94.3) | (93.5) | (95.0) | (92.4) | (95.7)

7 2.7 2.3 2.6 2.0 1.8 2.1
(94.0) | (94.9) | (92.6) | (95.8) | (95.4) | (94.3)

In the comparison between models, even when there are
some points with the same predicted values for both, a
general analysis of outlier points shows that the best
algorithm for CN prediction is the CGD.

According to the analysis above exposed, the best network
for prediction of the cetane number is the implemented
using the topology (11:4:1) of 11 inputs, 1 output variable
and four nodes. The response surface obtained for this
CGD (11:4:1) network selected for the prediction of the
CN as a function of Myristic and Lauric ethyl esters
percent is shown in Fig.3. In the same figure, in the right
side, the plot of the Palmitoleic percent versus the CN
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values is shown. It was the only two-dimensional
relationship obtained with changes in behaviour of the CN
influence depending of the magnitude (Palmitoleic
percent). In the case of the other nine FAMEs, a constant
trend was observed in the two-dimensional fits applied.

For the validation of models obtained by ANN, a data set
not related to the modelling data was used. The validation
data covers 15 samples from other references. The
collected data includes the experimental evaluation of
FAME composition and CN, covering a wide range of
possible values of cetane number (between 41 and 69)
taken from experiments using engine tests or an ignition
quality tester (IQT). The prediction capability of the
selected models for this external data were based in the
comparison between the predicted cetane number by the
ANN and the experimental value (actual value) trying to
find less residuals for the whole tested data. The full data
used can be consulted in [19].

Table I11. - Absolute errors and correlation coefficients (%) for
the CN using a logistic output function
nodes BP |CGD |DBD | LM | ON QP
3 2.2 2.1 2.6 2.2 24 2.3
(94.0) [ (94.4) | (93.5) | (95.4) | (94.2) | (94.8)
4 2.8 2.6 2.4 2.3 25 24
(93.0) [ (93.1) | (92.9) | (94.8) | (94.1) | (94.2)
5 2.2 25 2.0 2.4 2.2 2.1
(93.3) [ (94.8) | (92.9) | (93.8) | (95.7) | (96.1)
6 21 2.3 2.0 2.7 2.0 24
(92.4) [ (94.2) | (93.3) | (94.0) | (94.3) | (92.6)
7 19 2.3 2.2 25 25 2.3
(94.8) [ (93.5) | (91.1) | (91.0) | (93.1) | (91.0)

Lack of accuracy was observed in certain cases of the
validation, when the total percent of unsaturations in the
FAME composition of the biodiesel reach certain levels.

As is observed in Fig.4, for higher values than 80 % in the
total unsaturations, in some cases the uncertainty percent
is increased, reaching values higher than 5 %. The zone in
Fig.4 that covers the range 45-62 of cetane number
corresponds to the common CN value of biodiesel from
many feedstocks. As is observed, this is the zone that
shows the lowest outlier points in both cases.
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Fig. 3. Response surface and Palmitoleic percent influence in the cetane number estimation using a CGD (11:4:1).

According to Fig.4, even when some values are well
predicted by one or both ANNSs, the general behaviour is
to low accuracies when the unsaturation percent is higher
than 80 %, therefore the selected best model can fail in
this critical range of total unsaturations. Under this range,
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Fig. 4. Uncertainties percent vs. unsaturations percent for the selected ANNs
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the ANN (11:4:1) with CGD algorithm predicts the
cetane number with equal or higher accuracy than 95 %.
The model is not recommended for predicting cetane
number of pure FAMEs different from the selected for
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Yang [6] used a backpropagation neural network model
with a training step and a validation step. Ramadhas [9]
used an ANN to predict cetane number selecting four types
of networks. Basu [20] also used backpropagation,
Levenberg, quick propagation and delta-bar-delta as
training algorithms in three layer (8:3:1) neural networks.
For diesel fuels, he found correlation values for the
network in the training step (R = 0.9539). Yang [6]
obtained R = 0.8602 for the training step in a three layer
backpropagation network with 2.1 for the mean absolute
error but his network is only applied to diesel fuels.

Ramadhas [9] used four types of ANNS, not reporting the
absolute error of the networks. The author used 5 inputs
corresponding to 5 FAME while in this work it is extended
to 11 inputs. Ramadhas used a data set that covers biofuels
with cetane number between 22.7-75.6, similar to the
range applied in the present work. Therefore the prediction
capability of their ANNs can only be restricted to the
composition of 5 FAMEs that is quite limited due to the
amount of feedstocks, different in chemical composition
that can be found in these biofuels.

4. Conclusions

A model to predict the cetane number based on the
composition of ten FAMEs presented in biodiesel using an
artificial neural network was obtained with better accuracy
than 95 %. The best neural network for predicting the
cetane number was a backpropagation network (11:4:1)
using a Conjugate Gradient Descend algorithm for the
second training step and showing 96.3 % of correlation for
the validation data and a mean absolute error of 1.6. The
proposed network is useful for prediction of the cetane
number of biodiesel in a wide range of FAMEs
composition but keeping the percent of total unsaturations
lower than 80 %.
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