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Table I. - Chemical structure and name of the FAMEs 

fatty acid structure formula 

lauric 12:0 C12H24O2 

myristic 14:0 C14H28O2 

palmitic 16:0 C16H32O2 

palmitoleic 16:1 C16H30O2 

stearic 18:0 C18H36O2 

oleic 18:1 C18H34O2 

linoleic 18:2 C18H32O2 

linolenic 18:3 C18H30O2 

eicosanoic 20:1 C20H38O2 

erucic 22:1 C22H42O2 

 
 

Table II. - Absolute errors and correlation coefficients (%) for 
the CN using a linear output function 

 
nodes BP CGD DBD LM QN QP

3 2.7 
(94.7) 

2.4 
(93.5) 

2.4 
(94.9) 

1.9 
(94.6) 

1.9 
(94.5)

2.1 
(95.9) 

4 2.9 
(93.4) 

1.6 
(96.3) 

2.3 
(94.3) 

2.4 
(93.0) 

1.5 
(95.7)

2.4 
(94.6) 

5 2.3 
(93.9) 

2.6 
(94.9) 

2.0 
(95.3) 

2.3 
(95.2) 

2.1 
(95.9)

2.1 
(95.0) 

6 2.3 
(94.9) 

2.5 
(94.3) 

2.0 
(93.5) 

1.9 
(95.0) 

2.4 
(92.4)

1.9 
(95.7) 

7 2.7 
(94.0) 

2.3 
(94.9) 

2.6 
(92.6) 

2.0 
(95.8) 

1.8 
(95.4)

2.1 
(94.3) 

 
In the comparison between models, even when there are 
some points with the same predicted values for both, a 
general analysis of outlier points shows that the best 
algorithm for CN prediction is the CGD. 
 
According to the analysis above exposed, the best network 
for prediction of the cetane number is the implemented 
using the topology (11:4:1) of 11 inputs, 1 output variable 
and four nodes. The response surface obtained for this 
CGD (11:4:1) network selected for the prediction of the 
CN as a function of Myristic and Lauric ethyl esters 
percent is shown in Fig.3. In the same figure, in the right 
side, the plot of the Palmitoleic percent versus the CN 

values is shown. It was the only two-dimensional 
relationship obtained with changes in behaviour of the CN 
influence depending of the magnitude (Palmitoleic 
percent). In the case of the other nine FAMEs, a constant 
trend was observed in the two-dimensional fits applied. 
 
For the validation of models obtained by ANN, a data set 
not related to the modelling data was used. The validation 
data covers 15 samples from other references. The 
collected data includes the experimental evaluation of 
FAME composition and CN, covering a wide range of 
possible values of cetane number (between 41 and 69) 
taken from experiments using engine tests or an ignition 
quality tester (IQT). The prediction capability of the 
selected models for this external data were based in the 
comparison between the predicted cetane number by the 
ANN and the experimental value (actual value) trying to 
find less residuals for the whole tested data. The full data 
used can be consulted in [19]. 
 
Table III. - Absolute errors and correlation coefficients (%) for 

the CN using a logistic output function 
 

nodes BP CGD DBD LM QN QP 
3 2.2 

(94.0)
2.1 

(94.4)
2.6 

(93.5) 
2.2 

(95.4) 
2.4 

(94.2)
2.3 

(94.8) 
4 2.8 

(93.0)
2.6 

(93.1)
2.4 

(92.9) 
2.3 

(94.8) 
2.5 

(94.1)
2.4 

(94.2) 
5 2.2 

(93.3)
2.5 

(94.8)
2.0 

(92.9) 
2.4 

(93.8) 
2.2 

(95.7)
2.1 

(96.1)
6 2.1 

(92.4)
2.3 

(94.2)
2.0 

(93.3) 
2.7 

(94.0) 
2.0 

(94.3)
2.4 

(92.6) 
7 1.9 

(94.8)
2.3 

(93.5)
2.2 

(91.1) 
2.5 

(91.0) 
2.5 

(93.1)
2.3 

(91.0) 
 
Lack of accuracy was observed in certain cases of the 
validation, when the total percent of unsaturations in the 
FAME composition of the biodiesel reach certain levels. 
 
As is observed in Fig.4, for higher values than 80 % in the 
total unsaturations, in some cases the uncertainty percent 
is increased, reaching values higher than 5 %. The zone in 
Fig.4 that covers the range 45-62 of cetane number 
corresponds to the common CN value of biodiesel from 
many feedstocks. As is observed, this is the zone that 
shows the lowest outlier points in both cases.  
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Yang [6] used a backpropagation neural network model 
with a training step and a validation step. Ramadhas [9] 
used an ANN to predict cetane number selecting four types 
of networks. Basu [20] also used backpropagation, 
Levenberg, quick propagation and delta-bar-delta as 
training algorithms in three layer (8:3:1) neural networks. 
For diesel fuels, he found correlation values for the 
network in the training step (R = 0.9539). Yang [6] 
obtained R = 0.8602 for the training step in a three layer 
backpropagation network with 2.1 for the mean absolute 
error but his network is only applied to diesel fuels.  
 
Ramadhas [9] used four types of ANNs, not reporting the 
absolute error of the networks. The author used 5 inputs 
corresponding to 5 FAME while in this work it is extended 
to 11 inputs. Ramadhas used a data set that covers biofuels 
with cetane number between 22.7-75.6, similar to the 
range applied in the present work. Therefore the prediction 
capability of their ANNs can only be restricted to the 
composition of 5 FAMEs that is quite limited due to the 
amount of feedstocks, different in chemical composition 
that can be found in these biofuels. 
 
4.  Conclusions 
 
A model to predict the cetane number based on the 
composition of ten FAMEs presented in biodiesel using an 
artificial neural network was obtained with better accuracy 
than 95 %. The best neural network for predicting the 
cetane number was a backpropagation network (11:4:1) 
using a Conjugate Gradient Descend algorithm for the 
second training step and showing 96.3 % of correlation for 
the validation data and a mean absolute error of 1.6. The 
proposed network is useful for prediction of the cetane 
number of biodiesel in a wide range of FAMEs 
composition but keeping the percent of total unsaturations 
lower than 80 %.  
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