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Abstract. In recent decades, there has been a growing concern 

about the trend of global emissions, and in particular those of the 

transport sector. In this context, the electric vehicle is a promising 

technology, with some barriers still to be overcome. Among these 

deficiencies everything related to storage technology is found. In 

this sense, lithium-ion batteries are one of the options to be 

considered, although it is necessary to continuously monitor the 

state of health. Cycle life vs DoD curves are very useful for 

characterizing profitability in any application that considers 

battery storage, as well as life cycle optimization studies. Cycle 

life refers to the number of charge-discharge cycles that a battery 

can provide before performance decreases to an extent that it 

cannot perform the required functions (e.g., 80% compared to a 

fresh one in electromobility applications). In this paper, a model 

for calculating the Cycle Life vs DoD curves is proposed, applied 

to a commercially available electric vehicle, the Renault Zoe. 

Modelling results show R squared coefficient of determinations 

above 0.9890. 

 

Key words. Battery, Degradation, Model, Li-Ion-NMC, 
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1. Introduction 

 
In 2019, Greenhouse Gas (GHG) emissions from fossil 

fuels reached 36.81 gigatons of carbon dioxide equivalent 

(GtCO2e), increasing between 0.4% and 2.1% over the 

previous year. Moreover, it is estimated that GHG 

emissions will double by 2050 if actions are not taken [1,2]. 

The transport sector was responsible for 35% of the total 

energy consumed in 2014, of which 21% corresponded to 

passenger transport, with an average consumption of 1.9 

MJ/pKm [3]. Passenger transport by road accounted for 

49.7% of total energy consumption from oil in 2015 with 

1908.48 MToe and 5553.34 MtCO2 [3]. Considering all 

mentioned data, there is still a long way to reach the 

scenario of zero net emissions by 2060 from IEA [2]. In 

this scenario, the energy and transport sectors play a 

fundamental role in achieving the zero emissions goal, 

through the development and implementation of new 

technologies such as Electric Vehicles (EV) and the 

improvement of energy generation processes 

 

Nowadays, electric vehicles (EVs) are booming, due to the 

existing environmental problems. Among the different 

storage technologies in electromobility, batteries stand out 

the most. Although there are other alternatives such as 

hydrogen storage, a battery is also required for DC bus 

voltage stabilization and switching on of other essential or 

auxiliary devices of the fuel cell system [4]. High capital 

costs, limited lifetime, and relatively poor performance at 

low temperatures are the most important issues in EVs [5–

8]. Therefore, the development of efficient storage 

technologies is an essential part for electromobility [9]. 

 

Lithium technology is highlighted for electromobility 

among the studied batteries options [10]. Its specific 

power and energy density are the highest, with the lowest 

self-discharge ratio [11]. In addition, voltage by cell is 
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higher, which is the major drawback of the low 

overcharging tolerance. Therefore, a specifically designed 

charging system is required for this type of battery. 

 

Battery performance and health are also important factors 

from the perspective of a life cycle. Battery health has a 

direct impact on the maximum usable range of an EV and 

also affects its residual value because the battery is the most 

expensive component in it. In this context, a battery is 

assumed to have reached its end-of-life (EoL) when its 

health-accounting capacity retention falls under 80% [1]. 

Unfortunately, the lifetime of even state-of-the-art battery 

systems is considered too low, and further research is 

needed on this matter [2]. Therefore, increasing useful 

battery life and reducing the cost of the cells are determining 

factors in achieving a massive integration of EVs. 

 

2. Battery cycle aging model 
 

Based on the results of some experimental tests, the 

degradation model considered battery degradation by 

cycling in capacity fade terms [15]. Later, this degradation 

model was used to characterise the EoL of these cells, which 

is the aim of this paper. 

 

The studied cell is the commercially available “Pouch” cell 

LG Chem E63, which was engineered for high-demanding 

applications and installed in Renault Zoe EVs. This high-

capacity lithium-ion cell includes a nickel-manganese-

cobalt cathode and a graphite anode. 

 

Testing procedure has been as follows: These cells were 

cycled at a specified temperature while the measurements 

were performed, generally in 200 cycle steps. The cells were 

discharged at 32.5 A constant current, i.e., at C/2 C-rate, 

until 2.50 V was reached. Then, the cells were charged at 

constant current in two stages: the first at 21.6 A (C/3) and 

the second at 13 A (C/5), until 4.05 V and 4.20 V were 

reached, respectively. Both processes were realized at 25 

ºC, with 60 minutes resting time between them. 

 

In the development of the model, the following assumptions 

were made: 

• Battery degradation can be classified as cycling 

aging and calendar aging. These phenomena can 

be decoupled. 

• DoD=0 and/or C= 0 cycles produce no degradation 

by cycling aging, as in these conditions, there is no 

cycling and all degradation produced can be 

assumed to be calendar aging. 

• As this model is based on interpolations, the 

highest confidence bounds are defined by the 

available data, as shown in Table 1. However, 

using this model to calculate battery degradation 

out of these confidence bounds is also possible. 

 
Table I. - Confidence bounds for cycle aging. 

Temperature (T) DoD FEC C-Rate 

[25-45] ºC [20-80] % 
[0-1800] 

cycles 

[0.3786-

0.6710] C 

 

After collecting all experimental test results, data 

treatment and normalization were undertaken to get a 

normalized data matrix comprising all possibilities. 

Although the experimental tests were realized at concrete 

values of DoD, temperature, and C-rate, the developed 

model can obtain degradation values using any value of 

these factors. For every test performed, an equation 

describing degradation was determined considering every 

DoD, N, T, and C, following (1). 

 

𝑆𝑜𝐻𝐶 = 100 − 𝑎𝐶 · (𝐷𝑜𝐷, 𝐶. 𝑇) · 𝑁𝑏𝐶(𝐶,𝑇)  (1) 

 

where SoHC is the state of health, aC is a prepotential 

factor, N is the number of full equivalent cycles [FEC], 

and bC is a potential factor that better fits available data. 

 

For every data set, a linear regression adjustment was 

calculated, considering the following: 

• All data sets were adjusted to (11) or (12). 

• All data sets for the same temperature and C-rate 

were normalized using nonlinear square 

regressions of multiple data sets, and the b factor 

was set to a constant along DoD in order to obtain 

non-crossed curves. Consequently, a factor 

varies along operating DoD, T, and C, while the 

b factor varies along operating T and C. 

 

The degradation model results and validation are shown in 

Figure 1, where it can be seen the simulated surface and 

measured experimental values. The maximum error when 

simulating CF was 3.74%, given when DoD=0.8, N=100 

cycles, T=45 ºC, C=0.3786, while average RMSE was 

1.12%. 

 

3. Cycle-Life vs DoD 

 
The model explained in the previous section has been 

evaluated along different DoDs, temperatures and 

currents, in search of the number of FECs necessary in 

each condition to reach an EoL of 80%. If said number of 

cycles is plotted as a function of the cycling DoD, the so-

called Cycle-Life vs DoD curve is obtained, which is 

especially useful for evaluating different situations under 

identical energetic conditions. It has been experimentally 

determined that these curves follow the equation defined 

in (2): 

 

𝐶𝐿 [𝐹𝐸𝐶] = 𝑎(𝐶, 𝑇) · 𝐷𝑜𝐷𝑏(𝐶,𝑇) + 𝑐(𝐶, 𝑇) (2) 

 

where CL is the Cycle-Life [-], a is a prepotential 

coefficient, b is a potential coefficient [-], c is an offset 

coefficient [-] and DoD is the depth of discharge [-]. 

 

Knowing the CL in terms of FEC, it is possible to calculate 

the number of cycles at a certain DoD, according to 

expression (3). 

 

𝐶𝐿 [𝑁 @ 𝐷𝑜𝐷] =
𝐶𝐿 [𝐹𝐸𝐶]

𝐷𝑜𝐷
 (3) 

 

where CL is the Cycle-Life expressed in number of cycles 

at a certain DoD and DoD the depth of discharge [-]. 
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 . 

 
Fig. 1. Capacity degradation for a) 25C 0.3786 C, b) 45C 0.3786 C c) 25C 0.4812 C d) 25C 0.6710 C. 

 

  
a) b) 

Fig. 2. Cycle-Life, as a function of the DoD at 45ºC and C-Rate = 0.4C, a) expressed in FECs and b) expressed in number of 

cycles @ DoD. 

 

After having calculated all cycle-life data, a model which 

represents cycle-life according DoD has been developed. 

 

The model has been observed to adjust another potential 

law, which is expressed according to (4), and parameters 

values are provided in Table II. 

 

𝐶𝐿 [𝑁 @ 𝐷𝑜𝐷] = 𝑎(𝐶, 𝑇) · 𝐷𝑜𝐷𝑏(𝐶,𝑇)

+ 𝑐(𝐶, 𝑇) 
(4) 

where CL is the Cycle-Life expressed in number of cycles 

at a certain DoD and DoD the depth of discharge [-]. 
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a) b) 

  
c) d) 

  
e) f) 

Fig. 3. Cycle-Life adjusts studied, a) 45ºC and C-Rate = 0.5C expressed in FECs, b) 45ºC and C-Rate = 0.5C expressed in 

number of cycles @ DoD, c) 45ºC and C-Rate = 0.6C expressed in FECs, d) 45ºC and C-Rate = 0.6C expressed in number of 

cycles @ DoD, e) 35ºC and C-Rate = 0.4C expressed in FECs and f) 35ºC and C-Rate = 0.4C expressed in number of cycles 

@ DoD. 
Table II. Data of the adjustments performed and correlation coefficients. 

CCarga T 
FEC N @ DoD 

𝒂 𝒃 𝒄 R2 𝒂 𝒃 𝒄 R2 

0,4C 

25 ºC 55,18 -1,749 1175 0,9934 178,6 -2,382 1559 0,9997 

35 ºC 45,82 -1,758 1012 0,9925 146,2 -2,397 1384 0,9996 

45 ºC 36,88 1,786 883,4 0,9904 117,9 -2,424 1242 0,9995 

0,5C 45 ºC 38,26 -1,766 823,2 0,9900 110,6 -2,438 1190 0,9995 

0,6C 45 ºC 31,03 -1,815 781,3 0,9890 96,8 -2,461 1125 0,9996 
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a) 

 
b) 

Fig. 4. Cycle-Life adjusts studied, a) expressed in FECs and 

b) expressed in number of cycles @ DoD. 

 

Figure 2 shows this adjustment for the case of 45ºC and C 

= 0.4C, where the influence of the DoD on the CL can be 

appreciated. The adjustments for the rest of the cases 

studied are included in Figure 3. Note the difference 

between FEC and cycle @ DoD, the CL being expressed in 

FEC and in number of cycles at certain DoD, respectively. 

It is observed that very shallow cycling is highly beneficial 

in terms of cycling degradation. 

 

However, the minimum DoD will be determined by the 

range need of the EV user, while the total useful life will 

also be influenced by degradation due to calendar aging, 

among others. Table II shows the adjustments and 

correlations for the different cases studied, while these cases 

are graphed in Figure 4. 

 

In provided Table II, it can be seen that the model fits very 

well to data in N @ DoD terms, given by a minimum R2 

correlating factor of 0.9995. Furthermore, it is observed 

how the cycling temperature is a key variable in the useful 

life of a battery, comparable to the working current-rate. In 

this context, under operating conditions of DoD=40%, C-

Rate=0.4C and T=45 ºC, studied cells last 2328 cycles, or 

1072 FEC; under C-Rate=0.6C and T=45 ºC, studied cells 

last 2048 cycles, or 945 FEC; while under C-Rate=0.4C and 

T=25 ºC, studied cells last 3142 cycles, or 1448 FEC. 

Although measuring cycle-life in FEC is very useful for 

accounting for total energy throughput or kilometres 

driven, number of cycles at certain DoD (N @ DoD) has 

to be checked as well, as it defines the maximum number 

of trips before cells reaching their end-of-life in that 

application, for example. 

 

4.  Conclusion 
 

Battery degradation is one of the main problems of energy 

storage, in automotive applications as well as in stationary 

applications. Knowing the rate of degradation of a battery 

under a known working cycle is necessary for technology 

general deployment and performance improvement, as 

well as life cycle assessment since the usage optimization 

improves life cycle. Therefore, research on how to 

maximize batteries' lifetime is being encouraged. 

Concerning electric vehicles, people do want to know, as 

accurately as possible, how often they will need to replace 

the batteries installed in their vehicles. For this purpose, it 

is necessary to directly monitor, or indirectly estimate, the 

state of health. 

 

In this context, with the aid of this paper, and the lifetime 

model here presented, the trade-off between working 

current and temperature in batteries applications can be 

correctly assessed. 
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