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Abstract. This paper is focused on the prediction and forecast 
of climate time series, particularly useful for planning and 
management of the power grid, by artificial neural networks. An 
appropriate prediction and forecast of climate variables, indeed, 
improves the overall efficiency and performance of renewable 
power plants connected to the power grid. On such a basis, the 
application of suitable Artificial Neural Networks (ANNs) to the 
field of wind power generation is proposed. In particular, two 
dynamic recurrent ANNs, i.e., the Focused Time-Delay Neural 
Network (FTDNN) and the Nonlinear autoregressive network 
with exogenous inputs (NARX), are used to develop a model for 
the estimate and forecast of daily wind speed. Results, applied to 
a turbine model, allow the produced power to be calculated for 
energy management and planning purpose in smart grids. 
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1. Introduction 
 
The evaluation of the renewable energy potential 
production capability is of paramount importance to 
achieve the optimal exploitation of the available resources. 
This is especially beneficial in a smart grid context where 
an optimal energy management can be achieved by a 
complete dataset and data forecast. However, datasets can 
be corrupted for missing data or errors in some time 
intervals, whereas forecast is based on long term data 
sampling. For these reasons, a tool for data rebuilding 
(prediction) or data forecast is advantageous for energy 
and economical planning. In particular, the variable 
considered in this work is the wind speed whose accurate 
prediction is helpful for the reliable and high-quality 
operation of power system, and reduces the operating costs 
of wind power generation [1].  
The wind speed prediction can also let energy stakeholders 
predict the output power of a generator in advance, and 
can effectively reduce the impact of wind power 
fluctuations on the power grid. This allows the overall 

efficiency and power quality of the plant to be increased, 
which is a pivotal issue when designing and operating 
any renewable-based power generator [2]-[3].  
In addition, the energy forecast is useful to give the input 
to intelligent EMS (Energy Management System) to 
optimally manage loads and storage systems [4]-[6]. 
With reference to wind-farm power generation, 
modelling wind speed by means of time series 
forecasting techniques is going to be considered more 
and more promising [1], [7]. The high complexity and the 
intermittent and non-linear behaviour of the wind speed 
makes necessary the use of autoregressive, fuzzy and 
neural techniques and forecast model based on hybrid 
algorithms [8]-[10]. 
In general, Artificial Neural Networks (ANNs) and 
hybrid algorithms provide to be more effective than other 
classical autoregressive predictors for both wind speed 
and solar radiation [1], [7],[11],[12]. On such a basis, this 
paper proposes the use two dynamic neural networks, i.e., 
the Focused Time-Delay Neural Network (FTDNN) and 
the nonlinear autoregressive network with exogenous 
inputs (NARX Network), with their training algorithms, 
to obtain the estimation and forecast of daily wind speed. 
The same approach has been previously used by the 
authors for estimation and forecast of the daily solar 
radiation, with very good results [13]-[14]. 
The proposed models are experimentally validated and a 
comparison between them is given as well. 
 
 
2. Purpose of the work 

 
This paper proposes an application of ANNs to the field 
of wind power generation considering its high rate of 
penetration in the context of smart grids and distributed 
generation. In particular, two suitably trained dynamic 
recurrent ANNs, described in the next section, are used to 
develop a method for prediction and forecast of daily 
wind speed. The ANNs implemented in this study are 
particularly suitable to the time series prediction and 
show better performance respect to the classical feed-
forward ANNs in several similar applications [15]-[16]. 
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The higher computational demand, anyway affordable by a 
common PC, is justified by the possibility to obtain more 
reliable and precise models.  
The geographical area under consideration is situated in 
Sicily, the biggest island of Mediterranean area. In 
particular, the used dataset represents the daily wind speed 
and the daily maximum and minimum temperature 
recorded during 3 years, from 2010 to 2012.  
All data were provided by SIAS (Servizio Informativo 
Agrometeorologico Siciliano).  
The normalized Root Mean Square Error (nRMSE) and the 
Coefficient of Variation of the Root Mean Squared Error, 
CV(RMSE), are used to define the deviation between 
observed and estimated values. They are defined, 
respectively as: 
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where Y is the original time series, Ŷ is the predicted time 
series, Ymax, min are the maximum and minimum observed 
values and Y is the mean of the observed values.  
In this paper, the tables that shows the performance indices 
will contain the name of the indices with subscripts t, r and 
f  that indicate respectively training phase (application of 
models to estimation set), recall phase (application of 
models to validation set) and forecast phase. 
 
 
3. Modelling Approach 
 
The chosen ANNs are the Focused Time-Delay Neural 
Network (FTDNN) and the nonlinear autoregressive 
network with exogenous inputs (NARX Network). These 
ANNs can be both classified as recurrent dynamic ANNs. 
The specific feature of such neural networks respect to 
static feed-forward networks, such as backpropagation 
(BP) ANN or cascade-forward ANN, is their capability to 
learn dynamic or time series relationships. In particular, in 
dynamic ANNs, the output depends not only on the current 
input but on the current and previous inputs, outputs or 
states of the network, as well.  
With specific reference to the NARX network, a 
preliminary analysis, based on the system identification 
methodology has been carried out. It allows the best 
mathematical representation of the dynamic relationship 
among the studied variables (temperature and wind speed) 
by linear models to be identified. In addition, this analysis 
allows the limitations of linear models to be highlighted 
and gives a justification for using the NARX. A 
description of the used ANNs, including the system 
identification-based analysis, is given hereinafter [15]. 
 
 

A. Focused Time-Delay Neural Network (FTDNN) 
 
The FTDNN is the most straightforward dynamic 
network, which consists of a feed-forward network with a 
tapped delay line at the input. This is part of a general 
class of dynamic networks, called focused networks, in 
which the dynamics appear only at the input layer of a 
static multilayer feed-forward network. This network is 
well suited to time-series prediction. The FTDNN can be 
trained so to perform either one-step-ahead predictions or 
multistep-ahead predictions. In this last case the 
predictions are fed back to the input of the network, 
continuing to iterate.  
The structure of a FTDNN is shown in Fig 1. 
The network has been trained by the conjugate gradient 
backpropagation with Polak-Ribiére updates and the 
initial weights have been extracted randomly from a 
standardized normal distribution. 
The value of the learning rate, initially equal to 0.01, 
decreases according to an exponential law. The epochs 
used for training phase were 1000. Three network 
architectures, having different number of neurons in the 
hidden layer, have been evaluated and compared by 
means of statistical indices both in training and recall 
phases, for different values of input delays. 
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Fig.1 Structure of FTDNN. 
 
B. System identification 
 
System identification is a methodology for building 
mathematical models of dynamic systems using 
measurements of the system's input and output signals 
[16]. Dynamic system models can be defined as systems 
that have internal dynamics or memory of past states. In 
this application, daily temperature and daily wind speed 
data are taken into account and an analysis to find the 
linear relationship between them is performed. In a 
dynamic systems the values of the output signals depend 
on both the instantaneous values of its input signals and 
also on the past behavior of the system. In this study, the 
output of the process is the wind speed and the input is 
the temperature. In particular, a time series of daily wind 
speed and a time series of daily temperature in the period 
2010-2012 are available. Each dataset is split into two 
parts: an estimation set (80%) and a validation set (20%). 
A preprocessing procedure is preliminary applied to 
temperature and wind speed data. In particular, the de-
trending is applied to datasets and the outputs are 
reverse-transformed back into the units of the original 
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target data. Then, different linear models, among those 
available within the Matlab System Identification Toolbox, 
are selected and different model structures are tested. From 
the comparison of different models, the best estimation 
model is the ARX, an autoregressive exogenous model. It 
can be mathematically represented as: 
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The parameters na and nb are the orders of the ARX  
model; nk is the delay (number of input samples that occur 
before the input affects the output); 

na)y(t...1)y(t −++−  is previous outputs on which the 
current output depends; 1)nknbu(t...nk)u(t +−−++−  
is previous and delayed inputs on which the current output 
depends; )e(t  is a white-noise disturbance. 
Once the best linear model has been identified, three 
different structures of the ARX model, having different 
parameters, have been considered. In particular, the chosen 
structure are: the arx441 (na=4, nb=4 and nk=1), the 
arx442 (na=4, nb=4, nk=2) and the arxqs. This last 
structure is the so called fourth-order autoregressive with 
nk estimate by inpulse function, that calculates the unit 
impulse response of a dynamic system model. 
Although the ARX model is the best linear representation 
of the dynamic system temperature/wind speed 
relationship, it does not give satisfactory results, as it will 
be explained in Section 4. For this reason, a different 
approach, i.e., the use of a suitable ANN (the NARXnet), 
is followed. With this approach the strong non linearity of 
the temperature/wind speed relationship and the variability 
of the wind speed are appropriately taken into account. 
 
 
C. Nonlinear autoregressive network with exogenous 
inputs (NARX)  
 
The NARX network, differently from the focused 
networks, is a recurrent dynamic network, with feedback 
connections enclosing several layers of the network. The 
NARX model is based on the linear ARX model, it is well 
suited to model nonlinear dynamic systems and is 
commonly used in time-series modeling thanks to its 
adaptive learning process also with small scale 
meteorological data, collected, for example in less than 
one year [17]. 
In this network the next value of the dependent output 
signal y(t) is regressed on previous values of the output 
signal and previous values of an independent (exogenous) 
input signal. A feed-forward neural network, such as a 
standard Multilayer Perceptron (MLP), can be used to 
approximate the nonlinear mapping function f.  As for the 
training of the NARX network, it is noteworthy to 
highlight that the true output is available during the 
training of the network. Therefore, this value can be used 
instead of the estimated output during the training phase. 
This feature realizes a series-parallel architecture in whose 
main advantages are: a more accurate input to the feed-

forward network and the possibility to adopt a purely 
feed-forward architecture, and static backpropagation 
[18].  
For the application considered in this paper, the NARX 
network, where the exogenous input is the temperature, 
has been implemented using two configurations: a series-
parallel architecture and parallel architecture.  
The former is used in two operating modes:  
1. the temperature and wind speed datasets are divided 
into estimation sets and validation sets, to assess the 
network performance;  
2. all data, except those belonging to the last 10 days, are 
used for learning the wind speed behaviour.  
The latter architecture utilizes the exogenous input x(t) 
(in this case the temperature) to forecast the wind speed. 
Once the first structure has been trained, the second 
architecture is used to perform the forecast of the daily 
wind speed, according to a multi-step ahead prediction. 
These configurations are illustrated in Fig 2. Also in this 
case, the used training algorithm is the conjugate gradient 
backpropagation with Polak-Ribiére updates. Finally, a 
comparison by means of statistical indices both in 
training and recall phases has been done to define the 
best model. 
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Fig. 2 Structures of the NARX network: Series-parallel, up; Parallel, 

down. 
 

 
C. Data measurement and preprocessing 
 
The daily wind speed and the daily maximum and 
minimum temperature registered on Palermo weather 
station, in the north-east of Sicily, are used as dataset to 
train the ANNs. These registrations give, for the 
considered period of time, a complete series of daily 
wind speeds and temperatures. As a matter of fact, to 
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define models with the ability to suitably estimate and 
forecast measured data, the used dataset should be as 
good-quality as possible, homogeneous along with time 
and without missing data. In order to make the ANNs 
training more efficient, a pre-processing procedure was 
applied to temperature and wind speed data. In particular, 
a normalization step is applied to both the input vectors 
and the target vectors in the dataset and the network output 
was reverse-transformed back into the units of the original 
target data (post-processing procedure). In Fig. 3, the times 
series of daily wind speed data recorded over three year is 
shown. It is possible observe the high non periodic and 
intermittent behavior of the wind speed variable. 
 

0 200 400 600 800 1000 1200
0

0.5

1

1.5

2

2.5

3

3.5

4

Days

W
in

d 
Sp

ee
d 

[m
/s

]

 
 

Fig. 3 Wind speed recorded at Palermo weather station over three year. 
 
The used datasets for training the two ANNs are different. 
Particularly, for FTDNN the set of training and the set of 
validation are constructed from the measurements of two 
years, whereas the measurements of the third year are left 
for the test phase. For the System Identification 
application, temperature and wind speed are used and the 
data are split into two parts as explained in 3.B. 
On the other hand, with reference to the NARX network, 
the set of training is formed of a time series of daily wind 
speed and a time series of temperature in the period 2010-
2012. The datasets are split into estimation sets (80%) and 
validation sets (20%) for the first application with the 
series-parallel structure. For the second application, with 
series-parallel and closeloop structures, the time series of 
daily wind speed and a time series of temperature in the 
complete period are used except for the data related to the 
last 10 days that have been excluded from training dataset, 
to be used for testing the network as a forecast model. 
 
 
4. Results 
 
With reference to the first application , i.e. the FTDNN, 
three network architectures, having different number of 
neurons in the hidden layer, have been compared, for 
different values of input delays. The criteria selected to 
measure the performance of the neural networks are the 
nRMSE, and the CV(RMSE), as shown in Table 1. In 
particular, Table 1 gives the values of nRMSE and CV 
both in the training phase (RMSEt, CVt) and in the 
recalling phase (RMSEr, CVr). The best network is that 
where the minimum deviation between indices in the two 

phases is observed. As a matter of fact, the more similar 
are the indices the more performing is the network, by 
the point of view of its generalisation ability. 
On the basis of such a consideration, the best structure of 
the neural network is the 2-5-1 with a time delay equal to 
2 days. For this configuration the following indices 
values are obtained: nRMSEt=0.131, nRMSEr =0.140, 
CVt=0.342 and CVr=0.423. The comparison between 
measured (original targets) and estimated (network 
predicted) data is shown in Fig. 4. 
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Fig. 4 Measured (original targets) and estimated (network predicted) 

data with FTDNN-based model. 
 

Table 1. Assessment of the FTDNN-based model 

 
 
As for the second application, i.e. the NARX network, it 
has been implemented in the two configurations (series-
parallel and parallel) described in the previous section.  
For the first application the series-parallel configuration 
is used to evaluate the performance of NARX net in 
training and recall phase in comparison with ARX. It is 
possible to observe an improvement for nRMSE of about 
14% for training phase and 12% for recall phase; and 
improvement of 58% for CV in training phase and of 
31% for CV in recall phase. These results come from a 
comparison among the indices given in Tables 2 and 3. 
Moreover, from a comparison of figures 5 and 6, it is 
possible to note that the modelled wind speed fits much 
better with the experimental dataset in recall phase with 
the application of NARX model, respect to the use of an 
ARX model.  
For the second application, the series-parallel 
configuration is used to perform the daily speed wind 
time series prediction and the parallel structure is used to 
perform the forecast of the same data. Also in this case 
the assessment of the method is obtained considering the 
nRMSE and the CV indices and the deviation between 
indices in phase of training and forecast. As it can be 
seen from Table 3, the best configuration in this case is 
the 2-5-1 with a time delay of 2 days with the following 
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values of the statistical indices: nRMSEt = 0.10, 
nRMSEf = 0.40, CVt = 0.143 and CVf = 0.435. 
Fig 7 illustrates the performance of the NARX network-
based model to predict daily wind speed and to forecast its 
future trend. A zoom of the forecast results is given in Fig 
8, for the sake of clarity. By the presented experimental 
validation it is possible to conclude that both the models 
provided by the two considered ANNs give good 
performance in predicting the average values of the wind 
speed.  
As a result the average power generation of a given wind 
generator can be estimated on the basis of the following 
relationship, where A is the area of the turbine rotor, ρ is 
the air density and υ is the wind speed [19]-[21]: 
 

3

2
1 ρυAPwind =      (4) 

 
Finally, it should be observed that the NARX network 
gives the further advantage to allow both missing data in 
times series of wind speed to be retrieved and future trend 
of the same quantity to be forecast. 
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Fig. 5 Measured (original targets) and estimated (different ARX 

configurations) data with linear models for validation set. 
 

Table 2 Assessment of the ARX model 
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Fig. 6 Measured (original targets) and estimated (network predicted) data 

with NARX-based model in recall phase. 
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Fig. 7 Original targets and estimated data with NARXnet-based model, 

up; forecast with NARXnet-based model, down. 
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Fig. 8 Forecast with NARXnet-based model (zoom of Fig.7 down). 

 
Table 3. Assessment of the NARXnet-based model 

 
 
5. Conclusions 
 
Two dynamic recurrent ANNs, particularly the FTDNN 
and the NARX network, are suitably trained and used to 
model wind speed both for estimation and forecast 
purpose. 
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The daily wind speed and the daily maximum and 
minimum temperature in the period between 2010 and 
2012 registered on Palermo weather station, in the north-
east of Sicily, are used as dataset to train the ANNs The 
ANNs-based models are experimentally validated: they 
show both good performance since reliable and precise 
representations of daily wind speed are obtained. The 
followed approach gives two advantages. Firstly, it is 
possible to achieve a complete set of data even in case of 
missing data due to sensors faults or maintenance. 
Secondly, by exploiting forecast features, it is possible to 
define a suitable energy schedule together with the optimal 
sizing of the different parts of an electrical grid.  
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