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Abstract.  
 

This paper proposes a numerical method for the study of 
ventilation efficiency in buildings. The developed model is 
validated with the experimental results of Nielsen [5] who tested 
the isothermal flow in a scaled model of a ventilated room. A 
zonal method is used to predict airflow patterns in the same 
ventilated room.  The different equations governing the flow in 
the room were coded in Matlab for different operating 
conditions, different zonal configurations of the room and 
different number of cells (control volumes). The efficiency of 
the ventilation was determined by calculating the number of air 
changes per hour (ACH) for each cell. The present results show 
the importance of the inlet air flow rate, the space resolution and 
the jet inlet dimensions on the determination of air quality. 
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1. Introduction 
 
The prediction of airflow in enclosed spaces is essential 
for the design of efficient heating, ventilation and air 
conditioning (HAVC) systems. Modeling and calculation 
are used for this purpose to save time and money by 
avoiding experimentation which is complicated and 
expensive, particularly in the case of large buildings. The 
main such methods are the nodal method, CFD 
(Computational fluid dynamic) and the zonal method. 
 
The nodal, or multizone, method [1] considers each room 
or floor in a building as a fully-mixed zone by assuming 
uniform pressure, temperature and chemical concentration 
within each zone. The model includes control volume 
expressions of the mass, energy and species conservation 
equations and is easily solved. Its precision is limited 

since it relies on empirical correlations for heat and mass 
transfer. Furthermore, the fully-mixed assumption is not 
valid for large enclosed spaces (auditoriums, 
supermarkets, etc) or spaces with displacement 
ventilation. 
 
CFD models are based on the partial differential equations 
of fluid mechanics and heat-mass transfer. They simulate 
the airflow with high resolution by discretizing each part 
of the building with several hundred grid points. 
According to Qingyan Chen [2], who presented an 
overview of methods used to predict ventilation 
performance in buildings, CFD contributed 70% of the 
recent literature on this subject; he noted that “researchers 
continue to seek more reliable, more accurate, and faster 
CFD models. However, the effort has yet to produce 
fruitful results”. Thus, for example, the CFD 
determination of the two-dimensional temperature and 
velocity fields in an indoor skating rink for a 24-hour 
period required 24 hours of calculations on a modern 
desktop computer [3].  
 
An intermediate approach is the zonal method [4] in 
which the enclosed space is subdivided in a few dozen 
cells. In each cell, the temperature, air density and species 
concentration are considered homogenous whereas the 
pressure varies hydrostatically. The conservation 
equations for mass and energy are applied to each cell. 
This approach guarantees more detailed information than 
the nodal model and requires less time and computer 
capacity than the CFD approach. 
   
The purpose of the present study is to demonstrate the 
application of the zonal method for the calculation of 
ventilation effectiveness in an enclosure with a very high 
number of air changes per hour (ACH). The enclosure 
tested by Nielsen et al [5] is used for this purpose. 
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2. Literature review 
 
The early development of the zonal method has been 
reviewed by Mergi & Haghighat [4] and by Daoud & 
Galanis [6]. Qingyan Chen [2] indicates that before 2009 
most applications of the zonal method were for flows with 
weak momentum forces and stated that if they were 
strong, as in a jet or thermal plume regions, “the accuracy 
of the zonal model simulations would suffer 
considerably”. This limitation had already been
the works of Wurtz et al [7] and Musy et al [8]. As a 
result, specific models have been developed based on the 
work of Allard et al [9] for boundary layer models, 
Rajaratnam [10] for jets and Inard [11] for plumes. A 
complete review of models for specific flows has been 
presented by Teshome & Haghighat [12]. 
 
The problem under consideration here is the isothermal 
flow in the ventilated enclosure tested by Nielsen
illustrated in Figure 1. These experiments were carried out 
with an inlet air velocity of 15.02 m/s which leads to an 
extremely high number of ACH (approximately equal to 
58.5, see equation 6 for ACH relation). Mora et al [13] 
considered that this flow field is two-dimensional even 
though the experimental results by Nielsen clearly show 
that the flow field is three-dimensional. Their numerical 
results were in fairly good agreement with measurements 
of the jet velocity profile in the z=0 plane but did not give 
good agreement in the recirculation region (lower part of 
the enclosure). Daoud & Galanis [6] proposed a new 3D 
model for the air velocity in the wall jet and obtained 
better agreement than Mora et al [13]
calculated and measured velocity profiles at all the 
positions for which measurements are available. As a 
result of sensitivity tests they recommend that the shear 
stress approximation should be privileged over the 

Fig. 1.  
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results were in fairly good agreement with measurements 
velocity profile in the z=0 plane but did not give 
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the enclosure). Daoud & Galanis [6] proposed a new 3D 
model for the air velocity in the wall jet and obtained 
better agreement than Mora et al [13] between the 
calculated and measured velocity profiles at all the 
positions for which measurements are available. As a 
result of sensitivity tests they recommend that the shear 
stress approximation should be privileged over the 

conventional method and the 
should be used when there is more than one outlet.
 
Recently, Abadie et al [14] presented a detailed 
comparison of experimental results with predictions by 
CFD, Coarse-Grid CFD, FFD (Fast Fluid Dynamics) and 
the zonal method for isothermal 2D flow of air in a large 
(9 m long, 3 m wide, 3 m high) room. For the zonal 
method they used a modified 2D jet model which takes 
into account the increase of the jet mass 
entrainment and recirculation as well as different diffus
coefficients for different cell interfaces. These 
comparisons show that the proposed zonal model returns 
better results than the Coarse
methods; furthermore, the calculations with the zonal 
method are faster. However, as the authors of
point out, 2D air jet models are inadequate for many 
practical cases. 
 
In view of these remarks, the present study
wall jet model proposed by Daoud & Galanis [6] to 
predict the velocity profiles, mass flow rates and
of ACH for selected zones in the enclosure studied by 
Nielsen et al [5]. The effect of the number of zones, size 
of the air inlet and inlet velocity of the jet on these results 
is presented and analyzed. 

 
3. Problem Modelling 
 
Figure 1 shows the dimensions of the cavity
Nielsen et al [5], the coordinate system as well as the 
positions and dimensions of the air inlet and outlet. The 
experiments were carried out 
air velocity of 15.02 m/s which co
flow rate of 14.7 kg/h and a Reynolds number Re = 5000 
based on the inlet slot height (h = 5.008 mm)

 
 

 
1.  Schematic representation of the tested enclosure. 
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The following expressions for the air velocity within a 
three-dimensional wall jet were proposed 
Galanis [6] and are used in the present study 
the 3D flow field: 
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Where h is the height of the jet (m), w is the width of the 
jet (m) and (x, y, z) are the Cartesian 
subscript 0 in the equations corresponds to the initial 
conditions. 
 
This formulation (Eqs. 1 to 3) is based on the suggestions 
of Rajaratnam [10] who postulated that the 3D wall jet is a 
combination of the 2D wall jet in the XY plane and a free 
plane jet in the XZ plane. As a consequence, values of the 
constants in Eqs. (1)–(3) are equal to the corresponding 
ones for these two simpler jets:  
 
a = 0.693; b=0.097; c=10; d=1.48; e=0.68; K 
 
In order to calculate the velocities, two different zonal 
configurations were used in the present study
was obtained by dividing the test cavity into 36 cells 
the y direction and 3 in each of the other two directions)
described in the study of Daoud & Galani
configuration used 48 cells (3 in the z direction and 4 in 
each of the two other directions) which correspond
present study. Figure 2 presents the 48 cells zonal 
configuration and illustrates the dimensions used for the 
subdivision of the enclosure and the number
cells. In the z direction, the two zonal configurations
and 48 cells) contain a central zone (|z| 
two symmetrical side zones (26.2 mm ≤ |z
 
The mass flow rate mi,j crossing a vertical interface 
common to the cell i and j depends on the difference 
between the corresponding average pressures
conservation equations of mass are applied 
the mass flow rates are given by Eqs. (4) and (5) 
discharge coefficient Cd = 15. 
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Fig. 2. 48 cells zonal configuration
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normalized by the inlet mean velocity
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zonal configuration scenario (36 cells) 
Galanis [6] and to the experimental results
al [5]. 
 

500 1000 1500 2000
2.08

2.09

2.1

2.11

2.12

2.13

2.14

2.15

2.16

Q
/Q

0

 

Calculated velocities were obtained by coupling the 3D 
with the conventional zonal model (see 

for more details). 

 
 

2. 48 cells zonal configuration. All dimensions are in mm. 

he axial evolution of the volumetric flow rate 
is integrated numerically through the 

by w(x) (Eqs. 2-3). The 
corresponding normalized result, shown in Fig. 3, is 
represented accurately by the following Boltzmann 

�
                                        (6) 

15091, �� � 175.6188,

 

fit of Q/Q0=f(x/A0) 

the axial mean velocity profile, 
mean velocity, in the symmetry 

for two different axial positions in the 
present result (48 cells) is compared to the 

scenario (36 cells) of Daoud and 
to the experimental results of Nielsen et 

2000 2500 3000 3500
x/A

0

 

Eq.(6)
Eq.(1)

https://doi.org/10.24084/repqj10.528 921 RE&PQJ, Vol.1, No.10, April 2012



 
Fig. 4. Velocity profiles at x/H=1 and z/W=0 (P

 

 
Fig. 5. Velocity profiles at x/H=2 and z/W=0 (P
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cell is well conserved. 
 

Table 1- Number of ACH for some cells of the enclosure

Cell 
# 

Volume 
(cm3) 

Inlet Air 
flow rate 

Qin 
(m3/s) 

1 3.57 0.023 
2 10.70 0.060 
3 3.57 0.023 

14 24.00 11.340 
17 168.00 11.320 
29 168.00 20.991 
37 3.57 0.015 
39 3.57 0.015 
47 30.60 0.083 

B. Parametric study 
 
In this section, the effects of the 
jet inlet dimensions on the ventilation efficiency
presented and analyzed. The result
previously selected cells. Recall the ventilation efficiency 
is evaluated here by the normalized
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number of ACH was evaluated for each cell. The 
computed results were unchanged for cell
39. The variation of the ACH is reported in Fig
cells 14, 17 and 29 where the variation pronounced
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29). The results are summarised 
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s since the air flow rate at each 
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Inlet Air 
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Air flow 
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(m3/s) 

Normalised 
number of 

changes 
per hour 

0.023 1.155 
0.060 1 
0.023 1.155 

 11.340 83.191 
 11.320 11.863 
 20.991 21.999 

0.015 0.750 
0.015 0.750 
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v0. Nevertheless, this effect is only local 
of ACH remains the same (unchanged) for the other tested 
cells (1, 3, 37 and 39). 
 
Second, the height of the air jet inlet was 
5.0008 mm to h=10 mm and h=30 mm
effect on the ventilation effectiveness in different cells of 
the cavity. The corresponding results show that the 
numbers of ACH for the four upper corner cells (1, 3, 37 
and 39) were unchanged compared to those presented 
previously in Table I. 
 

 
Fig. 7. Effect of the jet inlet height on the ventilation efficiency 

ACH 
 
Figure 7 illustrates the effect of the variation of the inlet 
height on the number of changes per hours
cells across the jet (14, 17 and 29). It can be noted that 
changing this parameter has a low impact on the A
cells 17 and 29 but strongly affects the AC
 

 
Fig. 8. Effect of the jet inlet width on the ventilation efficiency 

ACH 
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Nevertheless, this effect is only local since the number 
for the other tested 

inlet was varied from h= 
5.0008 mm to h=10 mm and h=30 mm to evaluate its 

in different cells of 
esults show that the 

corner cells (1, 3, 37 
unchanged compared to those presented 

 

Effect of the jet inlet height on the ventilation efficiency 

the effect of the variation of the inlet 
height on the number of changes per hours (ACH) for the 
cells across the jet (14, 17 and 29). It can be noted that 

low impact on the ACH of 
CH of cell 14. 

 

Effect of the jet inlet width on the ventilation efficiency 

Finally, the width of the air inlet (originally w
mm) was increased to w0=40 mm and w
can see from Fig. 8, the change of the inlet width affects 
the ACH number of all the 
number of air changes has not varied much
and 17 it has dramatically increased 
Thus this indicates that the augmentation of the
width ameliorates the ventilation effectiveness.
 
5. Conclusion 
 
In order to evaluate the quality or effectiveness of the 
ventilation, the normalized 
this study for different cells in the cavity tested by 
Nielsen et al [5]. 
 
Contrarily to what is claimed by 
and Wurtz et al [7] whose work showed that the increase 
in the number of cells (space resolution in 
model) does not improve the quality of the airflow field 
in an enclosure, the present work 
importance of the number of zone
efficiency. 
 
It has been proved in this paper that the inlet jet velocity 
and the inlet dimensions 
effectiveness of the enclosure.
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does not improve the quality of the airflow field 

he present work demonstrated the 
of the number of zones on the ventilation 

It has been proved in this paper that the inlet jet velocity 
and the inlet dimensions influence the ventilation 

enclosure. 
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