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Abstract. Ball mills can be frequently found in ore grinding 

facilities. These machines show high energy consumption 

together with a low efficiency. As a consequence, even a small 

improvement on the performance of the grinding process can 

have a huge impact in the operating costs of the plant and in the 

optimization of energy resources. One of the reasons for this low 

efficiency rate is the difficulty of identifying the filing level, and 

as a consequence, the difficulty of operating the mill at the 

optimum filing condition. Through an extensive bibliographic 

review, this work attempts to reveal the interesting possibilities 

that motor monitoring techniques can have in improving the 

efficiency of ball mills 
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1. Introduction 

 
Mineral mills are machines used in those production 

processes which require the comminution of a certain 

material. The characteristics and operating principles of 

these mills can be very different, depending on the specific 

process and the target material; however, those known as 

ball mills are by far the most popular type (Figure 1). 
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Fig. 1. Ball mill for a coal-fired power station. 

Ball mills consist of a kind of rotating drum driven by an 

electric motor through a reduction gear. Inside of the 

drum the target material is arranged together with 

numerous steel balls (Figure 2), so that the comminution 

takes place due to the impacts and friction between those 

two components. 

 

 
 

 
 

Fig. 2. Top: Inside view of the rotating drum of a coal mill 

showing the balls. Bottom: Detail of the balls 
 

Despite its rudimentary operating principle, ball mills are 

the mineral grinding devices more widely spread [6], 

precisely because of their simplicity and robustness. 

Moreover, when the reduction ratio to be achieved in the 

ore grinding process is high, ball mills show a better 
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performance than other comminution devices such as high 

pressure grinding rolls [6], [9]. For all these reasons, ball 

mills are popular equipment in ore processing facilities, 

coal-fired power stations and cement plants [10], [11]. 

 

Today, the grinding process that takes place in ball mills is 

far from being efficient. According to the conclusions of 

certain studies, less that 20% of the energy consumption of 

the process is actually employed in the comminution [1], 

[2]. This low efficiency can be even affected by two facts: 

the intrinsic difficulties in making an adequate sizing of 

the mill [3] and, specially, the troubles on bringing it to the 

optimum operation conditions [4]. 

 

Broadly speaking, the mineral grinding processes are 

characterized by high energy consumption: some studies 

estimate that between 3% and 4% of the total electricity 

consumed in the world [5]. In the case of a typical ore 

processing plant, this consumption can represent up to 

70% of the energy required [5] and can even reach 75% in 

the case of cement plants [6], [7]. Lower values, but 

equally significant, can be found in the case of coal-fired 

power stations, where the coal grinding process may even 

reach between 20% and 25% of the energy consumed by 

the ancillary services of the plant [7], [8]. 

 

It can be deduced from the foregoing that, given the large 

power consumption figures involving ball mills, a small 

increase in efficiency in the grinding processes may have a 

large impact on the operating costs of the plant [12], as 

well as on the conservation and optimization of energy 

resources. 

 

2. Ball mills fill level monitoring 

 

One of the greatest research efforts in improving the 

efficiency of ball mills has focused on the monitoring of 

the fill level. For a given amount of steel balls, it is not 

desirable that the mill is too full or too empty of grinding 

material. If the fill level of ore grinding is low, most of the 

energy of the steel balls is wasted in impacts between 

them, leading to low comminution ratios. As the fill level 

increases, the gaps between the steel balls are being filled 

of grinding material and, as a consequence, the 

comminution ratio increases, reaching optimum values 

when all these voids are filled up. A fill level above this 

does not lead to an increment in the comminution ratio, 

due to the saturation of the collision areas. Finally, if the 

mill is overloaded, the grinding material causes a damping 

effect that decreases the comminution ratio. For these 

reasons, a proper monitoring of the fill level would allow 

operating the mill at maximum efficiency; however, as 

will be discussed below, this issue is still far from being 

solved. 

 

The difficulty of determining the fill level of the mill is 

revealed by the complexity of the control of the grinding 

process, specifically in the case of the ball mill type [4], 

[13-15], [17], [19], [21]. Two factors contribute largely to 

this: the impossibility of siting sensors inside of the mill to 

provide halfway information between the input and output 

of the material [4], [13]; and the huge difficulty in 

obtaining an accurate mathematical modeling of the 

grinding process, which is strongly affected by the 

complexity of its dynamical characteristics (the 

movement of the material within the drum, the size 

distribution of the ore particles, jams of material, the 

rotating speed of the mill, etc.) [13], [14]-[18], [20]. As a 

consequence, existing techniques aiming to estimate the 

fill level of ball mills have been obtained experimentally. 

 

The most straightforward way of controlling the load of a 

mill is the measurement of the power or current 

consumed by the electric motor that drives it. This 

procedure, quite simple to implement, faces the problem 

that the same energy consumption is observed with a low 

fill level or the optimum load. Above this fill level the 

energy consumption decreases, but this behavior makes 

this type of control unsuitable [22]. 

 

More traditionally used has been the procedure based on 

the measurement of the differential pressure between the 

inlet and outlet of the mill [23]. To apply this method an 

air flow through the mill is required, which can be used 

to avoid a powdery atmosphere or even to transport the 

material. As the fill level increases so does the 

differential pressure. However, this pressure is also 

affected by other factors such as the speed of the mill, the 

distribution of the particles according to their size, the 

mill lining system (shell plates and lifters), etc. 

 

In recent years, there has been considerable research 

effort devoted to estimate the fill level of the ball mill 

from vibration measurement. The procedure is based on 

the intense mechanical vibration caused by the movement 

of the steel balls and the grinding material within the 

drum. The characteristics of the vibration are directly 

related to the operation mode of the mill and their 

particular design features [24]. Through successive 

analysis of the vibrations, this variable has been 

correlated with the fill level of the ball mill on different 

operating conditions [7], [24]-[27]. 

 

Apart from being an invasive technique that uses quite 

delicate sensors (accelerometers), the major drawback of 

this method, as it can be observed in [24], is that the 

vibration measurement shows a high sensitivity to the 

location of the accelerometers on the structure of the mill. 

This fact can condition the estimation of the fill level. In 

some cases attempts have been made trying to 

circumvent this problem by combining vibration 

measurement with acoustic measurements [7], [26], [28]; 

however, the procedure becomes more complex and the 

noisy conditions of operation of this type of machinery 

makes it difficult to draw firm conclusions [25]. 

 

Therefore, it can be concluded that with state of the art 

technology, determining the fill level of the mill cannot 

be done in a simple and precise way; i.e. without the need 

for complex algorithms or without monitoring 

mechanical variables through invasive techniques whose 

validity is subject to the measuring conditions. It makes 

sense then to carry on a deeper research effort in this 

topic, due to the high impact of an accurate estimation of 

the fill level on the efficiency of the mill, and the huge 

amount of energy involved in the grinding process 
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3. Electric motors monitoring 
 

The condition monitoring of electrical machines and the 

subsequent diagnosis has been for decades a matter of 

great interest to the industry. This is due to the fact that by 

foreseeing the best time for a required intervention in an 

electric machine, allows users to best schedule the 

maintenance tasks and avoid costly unexpected 

interruptions that, depending on the importance of the 

damaged machine can affect the whole plant. 

 

Until the '80s, the monitoring techniques of electric 

machines were based almost exclusively on vibration 

measurement. By using these methods, mechanical 

malfunctions as misalignment and imbalance can be 

detected. In those years new techniques based on the 

measurement of electrical variables began to arise, not 

only for the detection of mechanical malfunctions but also 

electrical issues [29]. 

 

Today, motor condition monitoring has become a matter of 

the greatest importance in the protection systems for 

electric machines [30]. By applying these techniques, the 

reliability and availability can be significantly improved 

and the maintenance tasks simplified in a broad range of 

applications. Furthermore, the implementation of 

monitoring techniques in already installed machines does 

not generally require a high investment. Frequently, the 

sensors and hardware needed for this purpose are already 

available in the machine fulfilling protection functions, 

and all the necessary information can be obtain from them. 

 

Motor current analysis is the most well-known technique 

within the field, especially for the case of squirrel cage 

induction motors. Motor current monitoring has many 

advantages over the conventional monitoring of vibrations, 

as it does not need additional sensors more than those used 

by the protection system of the machine. Furthermore, 

accelerometers are expensive and fragile devices that must 

be applied directly to the structure of the machine. 

Specifically, motor current monitoring can detect the 

presence of broken rotor bars [31]-[44], stator insulation 

failures [45]-[52] and mechanical malfunctions [53]-[58]. 

 

An interesting phenomenon takes place when applying 

current monitoring diagnosis to a motor that is driving a 

load that shows a resistant torque with pulsating or 

oscillatory character. In these cases, an oscillation of 

mechanical nature determines the appearance of harmonics 

in the supply current and the instantaneous electrical 

power absorbed by the machine [41], [59]-[64]. If this 

harmonics show up at those frequencies used to 

characterized motor failures, the diagnosis method can 

lead to a false fault indication. The most important issue 

for the present case is that the pulsating torque of the load 

causes changes in the current spectrum at frequencies that 

are directly related with the load disturbances. This 

indicates that these changes can be detected from 

variations in the current or instantaneous power spectrums. 

In fact, in [65] a method is proposed for the monitoring of 

vibrations based on the current measurement. 

 

Similarly, another interesting phenomenon that occurs in 

the monitoring of the current is derived from the inertia 

of the motor-load pair. As noted in [66]-[69], the inertia 

is a factor that greatly influences the amplitude of the 

harmonics associated with the oscillatory torque linked to 

rotor failures. This is a good evidence of the ability to 

detect variations of the inertia through the spectral 

analysis of motor currents. Figure 3 shows the evolution 

of the harmonics associated to rotor asymmetry (1± 2sf), 

together with an oscillating torque at frequency 2sf (s 

being the slip of the induction motor and f the frequency 

of the supply grid). 
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Fig.  3. Current spectra of an induction motor showing the 

harmonics associated to a rotor asymmetry without a 

flywheel (top) and with a flywheel (bottom). 

 

4. Monitoring the ball mill through the 

electric motor drive 
 

Several aspects are characteristic in the case of ball mills. 

They are devices greatly affected by vibrations, insomuch 

that the latest methods for detecting the fill level are 

based on the spectral analysis of these parameters. They 

are also devices with a large moment of inertia, due to the 

huge amount of mass inside and also to the distribution of 

this mass far from the rotating axis. Finally, ball mills are 

often coupled to the motor through a reduction gear. This 

device causes pulsating torques linked to the gear 

frequency that entails the corresponding harmonic 

frequencies in the current spectrum. Figure 4 shows this 

phenomenon for the case of the current spectrum of a 

motor driving a coal ball mill. Sidebands around the 

fundamental frequency and related with the gear frequency can 

be observed. 
 

All the previous considerations open really promising 

research possibilities on the field of monitoring the fill 

level of ball mills. These new methods will use the 

evolution of specific harmonics of the motor current 

spectrum (or the instantaneous power, alternatively) with 

the variations of the inertia and the vibration caused by 

changes in the amount of grinding material. These 

aspects can be studied from monitoring the electric 

variables of the motor. 
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Fig.  4. Current spectrum of a motor driving a coal ball mill from 

a coal-fired power station. 

 

Finally, it can be said that the relationship between the 

operating conditions of the mill and the electrical variables 

of the motor is obvious. Therefore, the development of a 

method for the monitoring of the machine based on the 

analysis of the supply current (or the instantaneous power 

demand) of the electric motor that drives the ball mill has 

to be considered as a promising alternative to address the 

problem of estimating the fill level of the device. An 

accurate assessment of this parameter would lead to an 

immediate increase of the energy efficiency of this type of 

equipment. 

 

5. Conclusion 
 

The main conclusions that can be drawn from the 

discussion presented in this work are the following: 

  

Ball mills are machines that show large electric energy 

consumptions and low efficiencies; therefore even a small 

improvement in the milling processes may have a large 

impact on the operating costs of the plant and in the 

optimization of the energy resources. 

 

State of the art techniques do not allow the determination 

of the filling level of ball mills in a precise manner, which 

negatively impacts their performance. They need to resort 

to the monitoring of mechanical variables whose 

usefulness is subject to the conditions under which these 

measurements are made. 

 

Numerous studies, carried out on the monitoring of 

electrical machines by tracking their operating electrical 

signals, allow observing the influence of parameters such 

as the inertia or the presence of gears on this variables. 

Since ball mills are machines where these issues concur, a 

clear relationship between the operating conditions of this 

machinery and the electrical variables of the motor that 

drives it can be established. Therefore, the development of 

a method for the monitoring of the fill level of the mill, 

based on the analysis of the supply current of the electric 

motor or its instantaneous power demand, is a promising 

alternative to be considered in order to improve the energy 

efficiency of this equipment. 
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