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Abstract. The detection of the electrical signal 

discontinuities in the oscillographies recorded in substations 

and/or points of common coupling allows their segmentation, 

which is crucial for implementation of automated methods for 

detection, classification, location and storage by classes of 

disturbances in electric power systems. In this context, this 

study provides a way of determining an adaptive threshold that 

allows the segmentation of voltage or current signals based on 

Wavelets decomposition. The disturbances considered in this 

work were the short-duration voltage variations, impulsive and 

oscillatory transients, and harmonic distortions. The signals 

were synthetically generated.  Moreover, white noise was added 

on the signals. Thus, a Symlet Wavelet was applied to the 

signals in order to denoise them. In the sequence, a Daubechies 

Wavelet was used to decompose the filtered signals. So, to 

determine the initial and final points of each segment, an 

adaptive threshold was established based on the energy and 

entropy of energy for the second level of decomposition. Thus, 

the number and position of each segment were determined 

according to the intersections of the detail curves and the 

thresholds found. 

Keywords 
 

Power Quality, Electrical Disturbances Segmentation, 

Adaptive Threshold, Wavelet Transform, Feature 

Extraction. 

 

1. Introduction 

Power Quality (PQ) in Electrical Power Systems (EPS) 

has become a matter of great concern both to the 

costumers and utilities. The main reason for this increase 

in interest is that PQ disturbances can have economic 

impacts on both. Power quality monitoring is the first 

step to identify sources of disturbances in a system to 

point out corrective actions. The importance and interest 

in PQ monitoring are growing, driven by constant efforts 

to improve PQ.  

Any frequency variations or voltage waveform 

distortions can result in misoperation and/or failures of 

consumer's equipment, which can reduce their lifetime 

[1], [2]. 

In order to improve PQ, the source of disturbances should 

be identified before improvement actions [4]. Thus, to 

ensure a better PQ of a distribution power system, 

methods for automatic detection, classification, location 

and data storage became essential [1], [5]. In this sense, 

continuous data recording (with or without disturbances) 

are required, which leads to a huge volume of data to be 

inspected by experts [2], [3]. 

In general, Wavelet Transforms (WT) has been used for 

many years in such areas as image compression, 

mechanical vibrations and acoustic analysis [1]. Many 

studies on the use of WT in signal analysis have shown 

their ability to filter noise and for accurate detection of 

abrupt changes and discontinuities in electrical signals, as 

well as feature extraction [5]. This has led to its 

application in PQ disturbances identification. 

The main reason for its success lies on the fact that the 

wavelet function is the time-frequency decomposition, 

which generates coefficients in different scales. This 

property supports the WT analysis of signals with 

transient response due to PQ disturbances present in 

voltage, current and/or frequency [6], [7]. 

The Wavelets family most suitable for the detection of 

disturbances is the Daubechies, the Symlets with 8 

coefficients and De Meyer [8]. For many authors, 

Daubechies family of wavelets is appropriate for the 

detection of most classes of disturbances [8], [9]. 

In this scenario, the research in question is intended to 

determine an adaptive threshold that allows the 

segmentation of electrical signals through their 

decomposition by Daubechies Wavelets. So, short-

duration voltage variations (i.e., sags, swells and 

interruptions), transients and harmonic distortions were 

synthetically generated. In order to obtain voltage 
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waveforms closer to reality, Gaussian noise was 

convolved with these signals. Hence, a filtering step 

based on Symlets Wavelet family was applied to the 

voltage signals [9], [10].  

The paper is organized in five sections. Section 2 

presents the proposed methodology for signals 

segmentation. The segmentation results are presented in 

Section 3. Finally, Section 4 discusses the conclusions 

and final comments about the research carried out so far. 

 

2. Methodology 

For each of the examined disturbances (short-duration 

voltage variations, impulsive and oscillatory transients, 

and harmonic distortions) an adaptive threshold was 

calculated based on the energy and entropy of the energy 

so that it would fit and allow the segmentation of signals 

to identify the stretches that contain the mentioned 

disturbances.  

Considering that, the energy is the quadratic sum for each 

component of each detail leaf decomposed, the 

percentage energy can be obtained by Equation 1. 
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Then the percentage energy entropy for a given level of 

decomposition is given by Equation 2. 
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From the above equations, Equation 3 was empirically 

obtained, which determines the threshold used in the 

segmentation of voltage signals with the disturbances to 

be identified. Thus, the following equation was used to 

obtain the adaptive threshold value: 
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(3) 

The percentage energy value and, consequently, the 

energy entropy value are directly related to the severity 

of a particular disturbance [11]. 

Based on this behaviour, the calculation of the adaptive 

threshold allows tracing the graph of Fig. 1, which 

illustrates this feature. In this figure, it is observed that 

the threshold value is maximized according to the 

increase of disturbance sag severity, which explains the 

need of an adaptive threshold. 

Based on the severity of the events and definition of the 

adaptive threshold to each signal analysed, it was 

possible to observe the intersections between the defined 

threshold and the WT detail coefficients. 

These intersections determine the initial and final end 

time points of the disturbances, such as illustrated by Fig. 

2 and Fig. 4. 

0,10,20,30,40,50,60,70,80,9

0.0036

0.0131

0.0280

0.0359

0.0418

0.0517

0.0663

0.0824

0.0971

Remaining Voltage (p.u.)

T
h

re
s
h

o
ld

 
Fig. 1.  Threshold value according to the severity of the sag. 

As can be seen in Fig. 2, the initial (0.065 seconds) and 

final (0.13 seconds) time points of the sag are evident by 

Daubechies decomposition in the second detail level. The 

threshold (dashed line) calculated according to Equation 

3, allows the segmentation of the signal by separating the 

voltage without disturbance and the manifested sag. 
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Fig. 2.  Voltage waveform with sag and its adaptive threshold 

determined. 

It is important to mention that for other disturbances 

examined in this study, it can also be observed that the 

energy and the entropy energy are directly related to their 

severity. [11]. 

Fig. 3 illustrates the threshold for a case with harmonic 

distortion. It can be observed that where the total 

harmonic distortion (THD) of the signal was more 

severe, the calculated threshold value was also higher. 

This characteristic also explains the need for an adaptive 

threshold. 

From Fig. 4, the initial and final time points of the 

occurrence of harmonic distortion are highlighted using 

the second level of decomposition by Daubechies 

Wavelet family. Once a threshold (dashed line) was 

determined to intersect at such points (beginning at 0.065 

seconds and ending at 0.13 seconds), the curve can be 

https://doi.org/10.24084/repqj12.475 751 RE&PQJ, Vol.1, No.12, April 2014



split to separate the segments without distortion from the 

segment affected by harmonic components. 
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Fig. 3.  Threshold value according to severity of the total harmonic 

distortion.  

It is important to mention that, with the support of 

Matlab, the disturbances (voltage sags, swells, 

interruptions, transients and harmonic distortions) were 

generated as found in [9] and [10]. In these references, 

the disturbances appears in signals up to 0.2 seconds or 

12 cycles with amplitudes between -1 and 1 p.u. related 

with the nominal voltage. 
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Fig. 4.  Voltage waveform with harmonic distortion and its adaptive 

threshold determined. 

In this research, the resulting signals were convolved 

with Gaussian noise, where prior denoising of the signals, 

through the Wavelets Symlets, was necessary. The 

Symlets were chosen because they had better results in 

this task than other families analyzed such as Daubechies 

and Coiflets. 

For the task of segmentation of disturbances, the families 

Daubechies, Coiflets and Symlets were analyzed, 

because, a priori, there is no general rule that indicate 

which will be the best Wavelet to be used as well as the 

better level of decomposition.  

To determine the behaviour of the adaptive threshold for 

each of these disturbances, the total length of the 

synthetic signals was considered (12 cycles), and the 

voltage amplitude values for each situation were 

analysed, respecting the indicated limits. This means for 

sags 0.1 to 0.9 p.u., swells from 1.1 to 1.8 p.u., 

oscillatory transients 2 p.u. to 9 p.u., and in case of 

harmonics, the third, fifth and seventh components were 

added to the signal respecting their percentage categories 

indicated in [12]. The sags, swells and interruptions 

disturbances were generated with 4 cycles of duration. 

These signals were acquired using 64, 128 and 256 

samples per cycle. The best results (adaptive thresholds 

with appropriate values) were found for signals 

represented by 128 samples per cycle. 

The following section tables present the amplitudes of the 

disturbances, their values of the adaptive threshold, 

calculated according to Equation 3, and the number of the 

segments obtained for each disturbance considered in this 

research. 

 

3. Results 
 

A. Sags 

In the case of voltage sags, nine levels of amplitude were 

analysed in order to verify the behaviour of the threshold, 

as can be seen in Table I.  

For all cases analysed, the adaptive threshold found three 

segments, as this intersected the details curve in the start 

and end points of the disturbance. It is important to 

mention that the first and last half cycles are not 

considered because they do not represent real 

discontinuities in the signs. This can be illustrated by the 

second graph in Fig. 2 that represents the details curve to 

the second level of decomposition Daubechies 6. 

The Daubechies Wavelet with 6 coefficients was chosen 

because it presented the best results (required lower 

levels of decomposition and showed prominent peaks 

indicating the discontinuities) in the segmentation task 

for the analysed voltage sags. 

TABLE I.  SAGS CHARACTERISTICS. 

Sags 

Amplitude (p.u.) 
Adaptive 

Threshold 
#Segments 

0.9 0.0036 3 

0.8 0.0131 3 

0.7 0.0280 3 

0.6 0.0359 3 

0.5 0.0418 3 

0.4 0.0517 3 

0.3 0.0663 3 

0.2 0.0824 3 

0.1 0.0971 3 
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B. Swells 

The identification of the start and end points of swells 

disturbances has a similar behaviour to that of voltage 

sags. Decomposition by Daubechies Wavelets 6 was also 

used with two levels of decomposition. It was sufficient 

for the identification and subsequent segmentation of the 

analysed signal discontinuities. 

The performance of the adaptive threshold found was 

evaluated for eight levels of intensity of disturbances, as 

it can be seen in Table II. This effectively indicated the 

start and end of voltage swells, through three segments. It 

is important to mention that the characteristics of 

duration and magnitude indicated in [12] were 

considered. 

TABLE II.  SWELLS CHARACTERISTICS. 

Swells 

Amplitude 

(p.u.) 

Adaptive 

Threshold 
#Segments 

1.1 0.0026 3 

1.2 0.0098 3 

1.3 0.0186 3 

1.4 0.0251 3 

1.5 0.0310 3 

1.6 0.0352 3 

1.7 0.0406 3 

1.8 0.0486 3 

Fig. 5 illustrates one of the cases analysed and segmented 

to the situation of increased tension. The first graph 

shows the disturbance duration of four cycles, and the 

second graph shows two intersections with the adaptive 

threshold. The first and last half cycles are not considered 

as mentioned previously, because their discontinuities 

indicate just the start and the end of the complete 

synthetic signals. 
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Fig. 5.  Voltage waveform with swell and its adaptive threshold 

determined. 

 

C. Interruptions 

The voltage interruptions were also analysed according to 

the approach proposed in this work, i.e., aiming the 

identification of a threshold to determine the start and 

end of this disturbance. 

Nine cases were tested according to the magnitude and 

duration indicated in [12]. It is important to say that all 

these results presented three segments, as it can be 

observed in Table III. 

TABLE III.  INTERRUPTIONS CHARACTERISTICS. 

Interruptions 

Amplitude 

(p.u.) 

Adaptive 

Threshold 
#Segments 

0 0.0962 3 

0.01 0.0983 3 

0.02 0.0986 3 

0.03 0.0947 3 

0.04 0.0955 3 

0.05 0.0922 3 

0.06 0.1044 3 

0.07 0.1023 3 

0.08 0.1016 3 

Fig. 6 illustrates one of the nine cases analysed and 

segmented to the case of voltage interruption. The details 

graph intersections with the adaptive threshold are 

evident because of the minimum amplitude of the 

interruptions. 

As in previous cases, the best result, which required 

lower levels of decomposition and showed prominent 

peaks indicating the discontinuities, was obtained 

through decomposition by Daubechies Wavelets 6 and 

appropriate threshold was calculated according to 

Equation 3. 
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Fig. 6.  Voltage waveform with interruption and its adaptive 

threshold determined. 
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D. Oscillatory Transients 

In the case of the oscillatory transient, the time duration 

of the disturbance is shorter if compared to other 

analysed disturbances. It has about one cycle of duration. 

This led this disturbance to be identified and segmented 

by only one detail graph peak of the second level of 

Wavelets Daubechies 6 decomposition (Fig. 7). 

Table IV shows the values of the thresholds calculated 

according to Equation 3 for the intensity levels of 

oscillatory transient as found in [12]. 

TABLE IV.  OSCILLATORY TRANSIENTS CHARACTERISTICS. 

Oscillatory Transients 

Amplitude (p.u.) 
Adaptive 

Threshold 
#Segments 

2 0.2141 5 

3 0.2951 7 

4 0.3614 7 

5 0.4132 5 

6 0.4559 5 

7 0.4928 7 

8 0.5243 7 

9 0.5526 7 

In case of oscillatory transient there is a stretch of the 

disturbance details graph which presents certain 

oscillation, which makes the number of their intersections 

with the threshold greater than expected. This peculiarity 

creates more segments (5 or 7 segments) for this type of 

disturbance than that expected (3 segments).  

The graph 2 of the Fig. 7 shows such higher number of 

intersections between the decomposed detail and the 

adaptive threshold. 
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Fig. 7.  Voltage waveform with oscilatory transient and its adaptive 

threshold determined. 

 

E. Impulsive Transients 

In impulsive transient, the time duration of the 

disturbance is very short, from nanoseconds to 

milliseconds according to [12]. Therefore, it is only the 

indication point of occurrence of the disturbance, as it 

can be seen in the second graph of Fig. 8, which had 

three segments as shown in Table V. 

TABLE V.  IMPULSIVE TRANSIENTS CHARACTERISTICS. 

Impulsive Transients 

Duration 
Adaptive 

Threshold 
#Segments 

< 50 ns -- -- 

50 ns-1 ms 0.1402 3 

> 1 ms 0.1889 3 
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Fig. 8.  Voltage waveform with impulsive transient and its example. 

with its adaptive threshold. determined. 

 

F. Harmonic Distortions 

It may be noted in the second graph of Fig. 4 that the 

decomposition of signals contaminated by harmonics 

shows a clear change in behaviour during the occurrence 

of the disturbance. Equation 3, which determines the 

adaptive threshold value, allows to clearly identify the 

start and end of the disturbance (three segments), similar 

to the aforementioned disturbances. Table VI presents the 

number of segments in which the disturbance generated 

by the equations presented in [9], [10] was segmented. 

TABLE VI.  HARMONICS DISTORTIONS CHARACTERISTICS. 

Harmonic Distortions 

DHT(%) 
Adaptive 

Threshold 
#Segments 

5 0.0086 3 

10 0.0154 3 

15 0.0305 3 

20 0.0415 3 
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It is important to highlight that in case of harmonic 

distortions, the research considered just the third, fifth 

and seventh harmonic components and the combination 

of them generates the DHT percentages presented in 

Table VI.    

 

4. Conclusions 

This research proposes a method of determining adaptive 

thresholds for segmentation of PQ signals. The method is 

based on the energy and entropy of energy from Wavelet 

decomposition. So, Daubechies, Coiflets and Symlets 

Wavelet families were evaluated for decomposing these 

signals. 

The results that required lower levels of decomposition 

and had most prominent peaks in the discontinuities of 

the signals under analysis were obtained by Daubechies 

Wavelet with 6 coefficients.  

Consequently, based on the calculation of adaptive 

thresholds, the number and location of each segment 

were determined. Thereby, the results previously found, 

show that the calculation of the adaptive threshold is 

easily implement for power quality meters and presents 

good results in the presence of formulated synthetic 

signals. 

The next steps of the research will treat signals generate 

by more specific software, such as ATP (Alternative 

Transients Program) and with real data recorded by PQ 

meters. 
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