
European Association for the 
Development of Renewable Energies, 

Environment and Power Quality (EA4EPQ) 

International Conference on Renewable Energies and Power Quality 

(ICREPQ’11) 

Las Palmas de Gran Canaria (Spain), 13th to 15th April, 2011

Neural Networks Applications for Fault Detection on Wind Turbines 

R. F. Mesquita Brandão
1
, J. A. Beleza carvalho

1
 and F. P. Maciel Barbosa

2 

1
 Department of Electrical Engineering 

ISEP, Oporto Polytechnic Institute 

Rua Dr António Bernardino de Almeida, 431, 4200-072 Porto (Portugal) 

Phone:+351 228 340 500, e-mail:  rfb@isep.ipp.pt,  jbc@isep.ipp.pt 

2 
FEUP&INESC Porto, Oporto University 

Rua Dr Roberto Frias, s/n, 4200-465 Porto (Portugal) 

Phone:+351 220 413 349, e-mail:  fmb@fe.up.pt 

Abstract. Wind energy is the renewable energy source with a

higher growth rate in the last decades. The huge proliferation of 

wind farms across the world has arisen as an alternative to the 

traditional power generation and also as a result of economic 

issues which necessitate monitoring systems in order to optimize 

availability and profits. Tools to detect the onset of mechanical 

and electrical faults in wind turbines at a sufficiently early stage 

are very important for maintenance actions to be well planned, 

because these actions can reduce the outage time and can prevent 

bigger faults that may lead to machine stoppage. The set of 

measurements obtained from the wind turbines is enormous and 

the use of neural networks may be useful in understanding if 

there is any important information that may help the prevention 

of serious failures. The training of the Neural Networks however 

is not easy because the measurement set used for training must 

represent a period of time with no faults in the equipment of the 

turbine that is being monitored. 
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1. Introduction

Wind is nowadays one of the most important sources of 

energy in the world. From a worldwide viewpoint, 

installed capacity reached 159213 MW in 2009, out of 

which, 38312 MW were added in that year, showing a 

growth rate of 31,7%, the highest since 2001 [1].  

In Europe wind has overtaken all other sources of power 

and  has become Europe’s number one in terms of new 

installed capacity and accounted for  39% of all new 

power capacity in 2009 [2].  

Despite the world financial crisis, wind energy continues 

to be the most popular renewable power technology in 

many parts of the world. The reasons for this are climate 

changes, the will to hedge against volatile fossil fuel 

prices, speed of deployment and energy security. 

An efficient maintenance of wind generators is very 

important to minimize the operational costs of a modern 

wind farm. 

Table I. – New installed and de-commissioned capacity in EU in 

2009 [2] 

Source of Energy 
New Capacity 

(MW) 

De-

commissioned 

Capacity (MW) 

Wind 10163 115 

Natural Gas 6630 404 

PV 4600 0 

Coal 2406 3200 

Fuel Oil 573 472 

Biomass 581 39 

Waste 442 24 

Nuclear 439 1393 

Large Hydro 338 166 

CSP 120 0 

Small Hydro 54,5 0,6 

Other Gas 12 0 

Geothermal 3,9 0,5 

Ocean 0,40 0 

PEAT 0 0 

In most of the wind parks covered by the warranty, 

maintenance is carried out by the wind turbine producer. 

In the other parks, the wind park owner has his own 

maintenance teams to do the job or contracts out this 

specific job. The maintenance is preventive and done in 

pre-defined periods of time. Normally a minor service is 

done every 6 months and a major maintenance every 12 

months. When the turbine stops or major problems occur, 
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maintenance teams are urgently called out to try to solve 

the fault.  

The main objective is to minimize the outage time which 

in turn implies a maximization of the profits. For these 

reasons, wind turbine fault detection techniques are 

becoming indispensable in modern wind parks. 

This paper analyses the problem of choosing a data set 

with quality which can be applied to a Neural Network 

(NN) with the objective of developing a tool to prevent 

faults in some wind turbines components. 

 

2. Measurements 
 

The application of neural networks (NN) is dependent on 

the number of measurements and on their quality. The 

greater the quality data set, the greater the quality the 

results will be. If a year’s measurements are used the data 

set is very large and can be used for learning, test and 

validation of the NN. The main goal is to understand 

which measurements are important to use as input of the 

NN, because some measurements can have a weak 

influence on the process and this only contributes to 

wasting computational time. 

One of the great difficulties in training the Neural 

Network is to find a large period of time where no 

problems occurred to the equipment that is undergoing 

monitoring. This period of time will represent the normal 

behaviour of the equipment.  To do this work it is 

necessary to have information from the maintenance 

teams about the problems that have arisen in each wind 

turbine. Depending on which component is being 

monitored, the measurement set, which is necessary to 

build the model, is different. 

Wind turbines have a lot of sensors measuring important 

information of its behaviour. Depending on the turbine 

kind and producer, several measurements are made and 

saved in the park central computer or in the control centre, 

if it exists. Measurements are normally 10 minutes 

average values and can hide important information. In this 

particular Portuguese wind park equipped with 13 

machines of 2 MW, measurements saved are: 

 

Wind speed; 

Pitch angle; 

Generator rpm; 

Power; 

Frequency; 

Currents and voltages; 

16 wind turbine temperatures. 

 

The 16 temperature measurements are very important 

because they can hide a lot of information about the 

component’s behaviour. For the specific wind turbines in 

which the study is undergoing, collected temperatures are 

summarized in Table II, and from those 16 temperature 

measurements, some of them were used as input of the 

developed method to prevent faults in the electrical 

generator of the wind turbine. The method used to choose 

the most important measurements was based on several 

aspects that will be briefly explained as follows. 

 
Table II. – Temperatures measurements in the wind turbine. 

 

 Component 

Temperature 1 Environment 

Temperature 2 Hydraulics 

Temperature 3 Gear Oil 

Temperature 4 Generator 

Temperature 5 Slip Ring 

Temperature 6 Bearing 

Temperature 7 Hub Control 

Temperature 8 Nacelle 

Temperature 9 Top Control 

Temperature 10 Busbar 

Temperature 11 Spinner 

Temperature 12 Transformer L1 

Temperature 13 Transformer L2 

Temperature 14 Transformer L3 

Temperature 15 Generator Bearing 

Temperature 16 Cooling Water 

 

With the objective of monitoring the electrical generator 

and to try to prevent faults in the important wind turbine 

component it was necessary to analyse the behaviour of 

temperature 4, as shown in table II. Correlation between 

temperature 4 and all other measurements is an important 

tool to help choose the most important measurements that 

may influence the generator temperature. After conducting 

this analysis it is necessary to understand the behaviour of 

each correlated measurement as this will prevent the use 

of measurements that, albeit correlated, do not bring 

added value to the process. Then it is necessary to check 

the inertial effect of each selected measurement on the 

output as sometimes there is an inertial effect in the output 

in respect to an input and because of this, an alteration in 

the input may be felt in the variable output for some 

periods of time afterwards. 

By focusing on faults that may arise in the electrical 

generator, the measurement set was formed by four 

measurements, which were: 

 

 Average power; 

 Average current; 

 Temperature 1; 

 Temperature 8. 

 

Note that temperature 1 will suffer a delay of 4 periods of 

time (t-4) and the average power, average current and 

temperature 8 will be programmed with a delay of 2 

periods of time each (t-2) 

 

The analysis of the delay is based on the cross-correlation 

between measurements. When two measurements run 

synchronously the maximum cross-correlation is zero, but 

if maximum cross-correlation is not zero that means that 

there is inertia and in those cases it is necessary to 

introduce a delay in the measurements.   Fig. 1 shows an 

example of a measurement with a lag of 1 period of time, 

because that is the maximum value of cross-correlations 

between two measurements. 
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Fig. 1.  Cross-correlation between two measurements of a wind 

turbine. 

 

After defining the most important measurements that need 

to be used as inputs to the neural network, it is necessary 

to choose a period of time to train the network. 

 

3. Neural Network Application 
 

The main objective of the research work that is presented 

here is to introduce the problem of using a wrong 

measurement set to train the neural network and how this 

poor choice may influence the results of the neural 

network. 

The neural network aims to predict failures in some 

components of the wind generator. The variable that will 

be forecasted is the generator temperature (temperature 4) 

and in order to be able to make this prediction 4 inputs in 

the input layer will be used alongside 1 hidden layer. An 

example of the configuration of the neural network is 

depicted in fig.2. 

Fig. 2.  Schematic of the NN used to forecast generator 

temperature. 

 

 To develop the model it was necessary to choose the 

measurement set required to train the neural network. The 

procedure to select the most important measurements for 

the train process is not easy because the period of time 

used to collect the measurements must represent a time of 

normal behaviour of the turbine with no major problems 

on the components undergoing monitoring. If the 

measurement set used to train the NN contains periods of 

malfunction of the component under monitoring, all the 

results can be wrong. To train well the NN, one year of 

measurements, at least, will be needed. During that period 

of time, all turbine components must be working well. 

Any substitution of any equipment results in the necessity 

of training a new model of the Neural Network, even if 

the component is substituted by a new one with the same 

characteristics. 

To implement the neural network the CLEMENTINE 

software and the MATLAB Neural Network toolbox were 

used. The results obtained by the two software’s are 

similar. 

The criterion used to evaluate the model is the Mean 

Absolute Error (MAE). 

 

n

i i
eMAE

n 1

21

                           

(1) 

 

 

where ei represents the error between the real generator 

temperature and the estimated one and n is the number of 

estimations made by the neural network. 

 A MAE greater than a determined value indicates that 

something wrong has occurred in the electrical generator.  

 

4. Experimental Results 
 

The wind park used to make this study started its activity 

in 2004 and has 13 wind turbines of 2 MW, each equipped 

with double fed induction generators. 

Out of the 13 machines, two of them had problems with 

the generator machine that led to the substitution of that 

component due to a winding short circuit. One of those 

problems occurred in 2005 and the other in 2007. All 

other wind turbines did not present any serious problems 

with that component. 

By choosing a wind turbine with no problems and 

observing the results obtained from the developed tool, 

some conclusions can be drawn. 

 

 
Table III. – Results of MAE from NN 

 

Month 2007 2008 

Jan 4.510 6.188 

Feb 6.023 6.245 

Mar 4.354 6.463 

Apr no data avail. 7.848 

May 4.327 5.05 

Jun 4.325 6.749 

Jul 5.586 7.187 

Aug 4.852 7.690 

Sep 6.004 6.144 

Oct 6.248 6.337 

Nov 6.451 7.329 

Dec 6.745 6.85 

 

The ventilation of the nacelle is created by air circulation 

using electrical ventilators. Some of these ventilators had 

problems in some wind turbines and for that reason the 

wind turbine producer decided to substitute that 
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component irrespective of it being damaged or not. In 

September of 2007 the external ventilator of the generator 

was substituted for a new one. As it is possible to see from 

table III after September, the MAE value is consistently 

high. After the substitution of the external component the 

turbine worked well. Prior to this the turbine was working 

well too but the simple substitution of a component 

implies a constant error that can mask other faults or can 

induce the analysis of the results for a fault ,that in reality, 

does not exist. To solve this problem it is necessary to 

create a new model for the neural network, trained with a 

new measurement set obtained with the new component 

installed. 

Table IV shows clearly that, with a new model created 

with data obtained after September 2007, the electrical 

generator of the wind turbine is running well.  

 

 
Table IV. – Results of MAE from new NN model. 

 

Month 2007 2008 

Jan - 2.892 

Feb - 3.855 

Mar - 3.657 

Apr - 4.039 

May - 4.351 

Jun - 2.678 

Jul - 2.956 

Aug - 2.926 

Sep 5.998 4.187 

Oct 2.826 3.77 

Nov 3.046 4.144 

Dec 3.100 3.412 

 

September was the month of the substitution so the MAE 

for this model is higher denoting that something happened 

in this month. 

The months of 2008 that have higher values of MAE were 

due to work being carried out in the turbine. In April the 

gearbox was replaced. May was the month in which major 

maintenance took place. In September, a maintenance 

team needed to go to the nacelle to solve some troubles. In 

November the wind turbine was subjected to minor 

maintenance.   

As you can see from the results presented, this method of 

fault detection is very sensible and any change in the 

components that, directly or indirectly, have influence on 

the measurement used as output by the model, implies the 

creation of a new model to the turbine.  

The acquirement of a good model of the component under 

monitoring that represents the smooth functioning of that 

component is not easy in real wind turbines.  This is a 

handicap of the developed method because it is very 

difficult to have a large period of time with no damage 

components or with no great actions performed by the 

maintenance teams on the turbine.   

 

 

 

 

On the other hand, if the measurement set used to train the 

neural network is not satisfactory, results can be biased 

and faults can be masked. For all the reasons presented it 

is important to be especially attentive to the set of 

measures used to train the neuronal network. It is equally 

necessary to analyse the measurements and the service 

reports conducted by the maintenance teams so that the set 

used for training does not contain measurements obtained 

in periods where faults in the wind generator have 

occurred.  

 

4.  Conclusion 
 

The study presented shows that neural networks are a 

valid tool and can be useful in making an early detection 

of failures in some wind turbines equipment. However the 

neural network training process is the most delicate stage 

of the developed method. A poorly chosen period of time 

for the training process will result in a model of neural 

network that does not translate the correct turbine 

functioning and hence biased results 

All the results presented were applied to the electrical 

generator of a Portuguese Wind farm but the model can be 

used for earlier detection of faults in other components of 

the wind turbine. Similar results were obtained for the 

detection of gearbox failures.  
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