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Abstract  
 

The growing presence of solar energy in the electrical systems 

of many countries has made its accurate forecasting an 

important issue. In this work we will explore the application of 

Support Vector Regression (SVR), an advanced Machine 

Learning modelling tool, to forecast the daily photovoltaic 

generation of Spain. Given the very large geographical spread 

of photovoltaic installations, we will use as input features NWP 

forecasts of relevant meteorological variables for the entire 

Iberian Peninsula. The input dimension is thus very large but, 

while further work is needed, our results show SVR to be an 

effective tool to deal with the problem's underlying dimension, 

yield useful forecasts and further provide some insights on the 

relationship between NWP and actual solar energy production. 
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1. Introduction 

 
A natural approach to forecast the energy production over 

a wide geographical area is to predict first the individual 

outputs of each installation and then add the results. This 

has been done, for instance, in wide area wind energy 

forecasting [5] and, in fact, it may lead to accurate 

forecasts when geographically diverse installations are 

considered, as one can expect their individual errors to be 

relatively uncorrelated and, thus, to partially cancel out 

when their forecasts are added.  This is, however, quite 

difficult in the case of photovoltaic energy for, while 

geographic installation diversity is usually the norm, 

small installation sizes result in a very large number of 

them, making extremely difficult, if not impossible, the 

individual forecasting of each installation output. The 

alternative, to be considered in this work, is the direct 

forecasts of the aggregated energy output. As in the wind 

energy case, this can be done building models that 

transform inputs given by Numerical Weather Predictions 

(NWP) into energy predictions. These models may have 

a physical basis or, alternatively, and as it will be the case 

here, to be simple black box models built using general 

purpose modelling tools such as feed-forward neural 

networks or, as done here, Support Vector Machines, 

widely used in the application of Machine Learning (ML) 

methods to modelling problems. 

 

2.  Support Vector Regression 

 
Multilayer Perceptron (MLPs), i.e., feed-forward neural 

networks [2], are probably the standard tool in ML 

modelling. While usually quite effective, their models are 

difficult to interpret and, moreover, present a risk of 

model over-fitting when applied to problems with large 

dimensional inputs. Support Vector Regression (SVR) 

[13] is a relatively recent modelling alternative that 

addresses those MLP drawbacks. For instance, their 

memory requirements are basically independent of 

pattern dimension, the optimal SVR model is unique and 

thus they are free of the local minima problems that often 

affect MLPs, there are efficient training methods and 

publicly available implementation for them and, through 

the concept of Support Vectors, it is often possible to 

interpret the underlying model structure.  

More precisely, assume a N pattern sample 

},,1:),{( NtyXS tt  where ty is a target value 

that we want to approximate as );( WXfy tt   with f 

an appropriate model parameterized by the weights W. 

In the SVR case our goal is to build a linear model 

bXWWXf );(  where the optimal 
*W  is found 

minimizing the following primal criterion function 
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CW )(||||min *2

2
1

,,



,               

subject to the restrictions   

  ttt ybXW  

  *

ttt ybXW , 

with 0, * tt  and a certain tolerance that we explain 

next. First notice that we actually 

have   *

ttt bXW ; thus, considering 

the so called  -insensitivity cost function 

https://doi.org/10.24084/repqj12.423 605 RE&PQJ, Vol.1, No.12, April 2014



)||,0max(][   zzi it turns out that minimizing the 

primal criterion is equivalent to minimize  
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where we are allowing for  an  -wide, penalty-free 

"error tube" around the model function. 

Under this light, SVR can be thus seen as a variant of 

standard ridge regression where we have replaced the 

familiar 
22 )( bXWyz iii  square error by the 

][ iz  errors. To build concrete SVR models we do not 

minimize the primal criterion but, instead, its dual 

problem of minimizing  
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with the much simpler box constraints Ctt   ,0 . 

 

While simple and elegant, the previous set up would 

yield linear models possibly not powerful enough. To 

improve on this, the kernel trick [13] is used, that exploits 

the fact that only dot products are involved in the dual 

problem, its solution and the final model that has the 

form:  

  bXXbXWXf ttt )()( ***   

but not the actual patterns tX . Thus we can work with 

extended, possibly infinite dimensional patterns 

)(X provided there is a kernel )',( XXK  such that 

we have )',()'()( XXKXX  . Here we will use 

the Gaussian kernel
2
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, which results in a final  
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reminiscent of the Radial Basis Functions (RBF) models. 

While there are several proposals to solve dual problem, 

we will use here the well known LIBSVM [7] software, 

that represents the state of the art in SVM and SVR 

solvers. 

 

Finally, we point out that the SVR models always involve 

the meta-parameters C and  as well as the parameter 

 of the Gaussian kernel. Their correct choice is crucial 

for the models' performance and to obtain them we will 

split the overall training data available for model building 

into a training subset proper upon which models are built 

for different C,   and  choices, and a validation subset 

where the errors of these different models are computed. 

The final parameters used are those giving a smallest 

error on the validation subset. We give the specifics of 

this procedure in the following section. 

 

 

3. Wide Area Photovoltaic Energy SVR 

Forecasting 
 

At the end of 2013 the installed photovoltaic energy in 

Spain was well above 4 GW but the number of 

installations is also very large, close to 4,000. Moreover, 

while the south of Spain is obviously better suited to 

photovoltaic energy production, installations are actually 

spread over most of Spain. When trying to predict energy 

production this makes natural to use for simplicity the 

entire NWP forecasts over the Iberian Peninsula as the 

SVR model inputs. We will work with the ECMWF [3] 

forecasts of two variables, downward surface solar 

radiation (DSSR) and average total cloud cover (TCC). It 

is important to notice that the ECMWF forecasts are in 

fact three-hour aggregated values at UTC times 0 to 21. 

Thus a first natural goal is to use these ECMWF NWP 

forecasts to obtain predictions of three-hour aggregated 

energy production and then to deaggregate them into 

hourly energy values. This introduces two error levels in 

the prediction process: a first one due to the prediction 

system used to obtain the 3-hour aggregated energy 

forecasts (SVR in our case), and a second one due to the 

interpolation method used to yield hourly values. This 

suggests evaluate separately the errors derived from this 

two step process, which we do in the following sections. 

 

A. Aggregated Energy Production Forecasts 

 

We will first consider the error due to the ML forecasting 

procedure, i.e., SVR here. As mentioned, the 3-hour 

aggregated energy predictions are the natural goal. 

ECMWF DSSR forecasts are given as 3-hour 

accumulated values for UTC hours 0, 3, 6, 9, 12, 15, 18 

and 21. We will disregard hours 0 and 3 as they 

correspond to night-time all year long and, thus, no 

photovoltaic energy can be produced at these hours (the 

situation is different for thermosolar energy). Three-hour 

energy accumulated at hours 6 and 21 is also zero for 

large parts of the year but we will still keep them. 

Therefore, we will first predict 3-hour accumulated 

energy for UTC hours 6, 9, 12, 15, 18 and 21 from the 

corresponding ECMWF forecasts of DSSR and TCC. 

The ECMWF forecasting grid for the Iberian Peninsula 

has 1,128 points and input dimension is thus 

2x1,128=2,256. Although production data covers a 

longer period, we only have ECMWF NWP data from 

December 2012 to November 2013. This forces some 

choices when deciding on training, validation and test 

sets. We will follow the following strategy: we shall 

build an individual model for each month m that will thus 

be separately considered for testing. The remaining 11 

months will be used for training and validation aiming at 

selecting the best C,  and  parameters. This we do by 

a validation subset, randomly dividing each 11 month 

subset in 30% for validation and 70% for train subsets. 

Notice that training sample size for the "full year" models 

(in the sense that essentially an entire year is used to 

predict a given month) is below 6x365 patterns, much the 

same than the pattern dimension of 1,128 (although with 

large inter-feature correlations). To treat separately the 

much smaller energy values at hours 6 and 21, we will 
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build two separate SVR models, one for the 6 and 21 

hours and another for the remaining four hours.  

 

We will also study a competing model that starts with the 

prediction of the aggregated photovoltaic energy for an 

entire day. Here sample dimension would then be 

6x2x1,1128=13,536, now much bigger than sample size, 

which will be below 365, although again with large inter-

feature correlations. We study these daily models for 

comparison purposes as they provide a useful benchmark 

against which 3-hour models can be compared. On the 

one hand, the prediction of daily energy should be an 

easier problem, as the aggregations of hourly values 

smooth their fluctuations. On the other, in principle it 

should be more difficult the hourly deaggregation of total 

daily energy than that of 3-hour forecasts. As we shall 

see, and at least for the "full year" models built here and 

somewhat surprisingly, daily models outperform 3-hourly 

models; they thus deserve further attention. Moreover, 

while we use here a unique modelling approach for all 

days, it may be of interest to consider different prediction 

venues for different day types. For instance, radiation 

and, hence, energy values in two consecutive clear sky 

days are very similar, and a prediction for the second day 

could just be the production values of the first one. The 

difficulty to apply such a simple persistence model is, of 

course, to predict accurately whether the second day will 

be similar indeed to the first one, and for this aggregated 

energy predictions could be useful. 

 

Both daily (D) and 3-hourly (3H) models have been built 

using the LIBSVM library with Gaussian kernels; Table I 

contains the optimal parameters obtained for each month 

with the 70-30 approach described above. Notice that 

instead of   we give the parameter g used in LIBSVM; 

they are related as g21 . Thus, when g is 

approximately 5·10
-5

, as in the table,   will be 

approximately 100. The 3-hour model parameters are 

given only for the 4-period model. The parameter values 

for 6 and 21 hour monthly models, not shown in the 

table, are in the ranges 13.45 to 76.11 for C, 1.03·10
-4

 to 

2.44·10
-4

 for g and 0.59 for  . 

 
Table I: Best SVR parameters for each month. 

Mon CD gD D  C3H g3H H3
 

Dec 1217.75 4.3·10-5 13.45 2435.5 5.8·10-4 1.68 

Jan 1217.75 4.3·10-5 13.45 2435.5 5.8·10-4 2.38 

Feb 38967.9 1.8·10-5 9.51 2435.5 5.8·10-4 2.38 

Mar 1217.75 4.3·10-5 13.45 2435.5 5.8·10-4 2.38 

Apr 38967.9 4.3·10-5 1.19 2435.5 5.8·10-4 4.76 

May 38967.9 4.3·10-5 9.51 2435.5 5.8·10-4 2.38 

Jun 1217.75 4.3·10-5 13.45 13777.2 5.8·10-4 13.45 

Jul 1217.75 4.3·10-5 19.03 13777.2 5.8·10-4 13.45 

Aug 38967.9 4.3·10-5 13.45 2435.5 5.8·10-4 2.38 

Sep 1217.75 4.3·10-5 0.59 13777.2 5.8·10-4 13.45 

Oct 1217.75 4.3·10-5 13.45 2435.5 5.8·10-4 2.38 

Nov 38967.9 4.3·10-5 19.03 2435.5 5.8·10-4 2.38 

 

In order to compare both models' results we introduce the 

following notation. 
3

,hdE  will denote the accumulated 3-

hour energy up to an hour h  of the form kh 3 , 

}7,6,5,4,3,2{k , of day d and 
3

,
ˆ

hdE its SVR 

prediction; throughout this work hourly E values will 

refer to actual hourly energy values normalized as a 

percentage of installed power. We will thus have 

1000 ,  hdE  for all hourly energy values and 

similarly 3000 3

,  hdE  (although the latter value is 

usually quite lower). Similarly, 
D

dE  and 
D

dÊ will denote 

the total energy of day d and its SVR prediction. We will 

consider predictions of daily energy derived from 
3

,
ˆ

hdE values, that we will denote as 
3ˆ
dE  and, 

correspondingly, we will denote by 
D

hdE ,
ˆ  the predictions 

of 3-hour energy up to an hour kh 3  derived from 

daily energy predictions 
D

dÊ . The 
3ˆ
dE  predictions are 

simply obtained as  


7

0

3

3,

3 ˆˆ
k kdd EE ; on the other 

hand, the deaggregation of 
D

dÊ  into 3-hour predictions 

D

hdE ,
ˆ  or that of the 3-hour predictions 

D

hdE ,
ˆ  into hourly 

predictions is more complicated and we will discuss it in 

the following subsection. 

 

Taking into account the preceding, we will only consider 

here the errors
3

,

3

,

3

,
ˆ

hdhdhd EEe  , 
333 ˆ
ddd EEe   

and
D

d

D

d

D

d EEe  ˆ . The yearly mean absolute errors 

would then be 
d

D

dN

D eme ||1  with N the number 

of days, and the similarly 

defined   


d k kdN
eme ||

7

2

3

3,
13

, as well as the 3-

hourly errors 
d kdNk eme || 3

3,
13

3 . Notice that while 

in principle we should take 70  k , there is no 

photovoltaic energy production in the UTC hours 

between 22 and 3 and we trivially have error zero; thus, 

we will simply not report them. 

 

It is obvious that seasonality greatly influences 

photovoltaic energy production and accordingly we will 

also report the monthly versions 
D

mme  and 
3

mme  of the 

previous values. These values are given in Table II. As it 

can be seen, the results in the left side of Table II are at 

first sight better for the daily D models, but notice that 

the
3

de  values are penalized as we add their absolute 

values for each 3 hour period 

as   


d k kdN
eaem ||~ 7

2

3

3,
13

. On the other hand, if 

we observe the right side of Table II that contains the 3-

hour error, the D models give more accurate predictions 

again. Thus, as it can be seen, D models outperform 3H 

models. 
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Table II: Daily and 3-hour interval errors for each month 

Months D

mme  
3

mme  
D

kme3
 

3

3kme  

Dec12 27.89 32.33 5.25 7.61 

Jan13 24.67 46.48 6.40 9.13 

Feb13 30.98 51.52 7.82 9.89 

Mar13 38.42 43.64 9.21 9.51 

Apr13 38.18 44.31 8.54 9.90 

May13 33.10 37.31 7.60 10.67 

Jun13 21.76 44.77 5.47 11.31 

Jul13 12.21 53.55 5.51 10.34 

Aug13 32.66 32.32 6.35 7.20 

Sep13 16.59 28.51 6.05 6.34 

Oct13 31.96 40.16 9.26 8.18 

Nov13 23.79 37.71 6.64 7.89 

Ave 27.35 41.06 7.01 9.00 

 

The individual errors 
3

;mhme  for each 3-hour interval for 

the 3H models are given in Table III. We point out the 

large errors for the 3-hour intervals ending at hours 9 and 

18 in April, May and June and also to the relatively 

surprising large errors at the hour 12 and 15 intervals for 

January and February and also November and December. 

We will discuss this behavior later in this section. 

 
Table III: 3-hour interval MAE error for each month 

Months 3

6me  
3

9me  
3

12me  
3

15me  
3

18me  
3

21me  

Dec13 0.11 5.52 16.16 17.34 6.43 0.11 

Jan12 0.07 4.65 23.09 20.72 6.18 0.07 

Feb13 0.13 5.96 24.09 22.10 6.94 0.13 

Mar13 0.12 8.98 17.65 20.69 9.43 0.18 

Apr13 0.31 9.38 17.09 17.21 14.85 0.56 

May13 0.68 18.77 14.53 15.44 13.64 0.97 

Jun13 0.91 24.43 10.58 13.10 17.18 1.67 

Jul13 0.55 14.53 10.11 8.61 26.97 1.25 

Aug13 0.28 8.49 10.65 9.61 13.49 0.65 

Sep13 0.13 8.03 10.36 9.52 9.80 0.22 

Oct13 0.08 9.61 14.88 16.84 7.58 0.11 

Nov13 0.11 6.70 17.92 17.19 5.21 0.21 

Ave 0.29 10.42 15.59 15.70 11.47 0.51 

 

B.  Hourly Energy Production Forecasts 

 

In order to interpolate daily or 3-hourly energy forecasts 

into hourly vales, the simplest way to proceed with these 

interpolations is to consider for each day d a certain 

interpolation table hdp , , 230  h  such that 

1
23

0 ,  hdp  and to derive then 
D

dhd

D

hd EpE ˆˆ
,,  and 

3

,,

3

,
ˆˆ

hdjhdld EE   for an hour jhl  with kh 3  

as usual and }2,1,0{j  and 

  



 
2

0 ,

,

,

m mhd

jhd

jhd

p

p
p . 

The key issue is thus the selection of the interpolating 

values hdp , . For a concrete geographic location a natural 

option could be to take hdhdp ,,   with hd ,  the 

averaged hourly values of the clear sky radiation curve 

for that point [1,8,9,10]. Notice that since we will use the 

averaged version, actual radiation values are not relevant 

but only the capture of the overall radiation evolution and 

particularly, the adequate identification of sunrise and 

sunset. However, accurate clear sky curves are not easy 

to build [4,6,11,12] and, moreover, radiation values do 

not translate directly to energy values as this depends 

heavily on installation and operation characteristics.  

Finally, even if the above hurdles can be overcome for 

individual plants, the clear sky curve of the entire Iberian 

Peninsula simply does not exist as such. 

 

 
Fig. 1: Clear sky curve for May 30 and November 11. 

 

On the other hand, photovoltaic energy production itself 

could be used to build a clear sky curve proxy. We find 

this an interesting venue that, nevertheless, will require 

still some work to arrive to a full development. As a first 

approach, we will simply compute here for each pair 

),( hd a "maximum energy curve" hd ,  defined as 

},_{max ,,,, yqE yhqdqyhd    , 

where   is some small integer and  yhqdE ,,  denotes 

the energy produced at hour h in all qd   days of a year 

y . In other words, hd ,  is the maximum of the 

normalized energy productions registered at hour h and 

any day in the interval ],[   dd  all years with 

photovoltaic energy production records (in our case from 

June 2011 to November 2013). Figure 1 depicts the 

 curves for May 30 (with a rather smooth curve) and 

November 11 (which is more difficult to interpret). In 

any case, we stress that other, perhaps better criteria 

could be devised to interpolate 3-hourly or daily energy 

predictions. 
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The errors considered here will be hd

H

hd

H

hd EEe ,

3

,

3

,
ˆ   

and hd

HD

hd

HD

hd EEe ,,,
ˆ  . By the reasons discussed 

above, we shall disregard the }23,22,3,2,1,0{h  

hours, as there is essentially no energy production for 

them (summer production for hour 21 is also very low). 

 

 

 
Fig. 2: Radiation (red) vs production (blue) from Dec. 2012 to 

May 2013 (top) and from June 2013 to  Nov. 2013 (bottom). 

 
Table IV: Hourly MAE error for each month. 

Months HD

hme  
3H

hme  

Dec13 1.83 2.64 

Jan12 2.31 3.22 

Feb13 2.84 3.55 

Mar13 3.29 3.43 

Apr13 2.98 3.43 

May13 2.67 3.65 

Jun13 1.89 3.80 

Jul13 1.89 3.53 

Aug13  2.17 2.52 

Sep13 2.15 2.41 

Oct13 3.26 3.16 

Nov13 2.34 2.81 

Ave 2.48 3.18 

 

Because of this we will report the yearly mean absolute 

errors for them as   


d h

HD

hdN

HD eme
21

4 ,16

1 ||  and 

define similarly
3Hme . Their respective values are 

48.2HDme  and 18.33 Hme . We shall also 

consider their monthly counterparts 
HD

mme  and 
3H

mme   

that are given in Table IV. As it can be seen, the 

performance of both D and 3H models are rather similar, 

with the D models being slightly better. 

 

4. Conclusion 
 

Global photovoltaic energy forecasts are of growing 

interest in countries such as Spain where solar energy 

already has a sizeable presence and a clear potential for 

further expansion. While an approach where individual 

installation forecasts are added to get a global forecast is 

likely to result in the partial cancellation of individual 

errors and, thus, in accurate predictions, such an 

approach can be quite difficult when there are many and 

very scattered, low power installations. Direct global 

models are then a natural option and, as shown in this 

work, this leads to fairly good forecasts of daily and 

three-hour aggregated energy that can be then 

deaggregated into hourly values. However, and as 

already mentioned, more work is still needed. First, 

although they share a common trend, the concrete 

relationship between energy and radiation (the most 

important NWP variable) varies seasonally in a 

noticeable way. This can be seen in Figure 2 that depicts 

daily energy production and average radiation prediction, 

both normalized to the 0-1 range. In the figure both 

curves show a common trend and a clear correlation; 

however while they appear closer in the summer; 

radiation is well below production in winter. In other 

words, it seems difficult that "full year" models as the 

ones used here can predict accurately both winter and 

summer radiation. In fact, it is likely that the weight of 

the days around the spring and fall equinoxes, whose 

number doubles those of the days around the summer and 

winter solstices, should be better modelled by a "full 

year" model, and this is what seems to happen to our 

models, that infrapredict production in the lower 

radiation winter days and overpredict it in the higher 

radiation summer days. 

 

Thus the selection of training subsets in order to predict a 

given time period is of great importance and has to be 

further studied. Moreover, how to deaggregate three 

hourly energy predictions also needs to be further 

studied, with our proxy clear sky curve being a 

reasonably good first step. Finally, the easier energy 

prediction on basically clear sky days also suggests that 

single all day types models may be improved using 

models more tailored to a given day general 

characteristics; D-type models may give accurate energy 

predictions for an entire day and, thus, detect whether a 

given day's energy can be accurately predicted from that 

of the previous one. We are currently studying these and 

other related issues. 
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