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Abstract. This paper presents the development of an 

automated tool called QuEEN PyService, aimed to the extraction 

of events voltage signals from the QuEEN distribution network 

monitoring system database, for advanced Power Quality 

analysis. The application has allowed the integration of the 

DELFI classifier (DEep Learning for False voltage dips 

Identification), recently developed by RSE, making it possible 

for the first time the intensive validation of the latter on a large 

number of voltage dips. Thanks to this tool, a comparison 

between the performance of DELFI and those of an older 

criterion based on the 2nd voltage harmonic measurement has 

been performed using data recorded by 61 measurement units in 

the period 2015-2020 The analysis has been focused on 

traditional PQ voltage dips counting indices as N2a e N3b. Results 

show that the usage of the DELFI classifier increases the N2a and 

the N3b by respectively the 20.6 % and 38.8% with respect to the 

QuEEN criterion. 

 

Key words. deep learning, voltage dip, automatic 

detection, power quality, monitoring system. 

 

1. Introduction 
 

In the last years, the distribution grid development has to 

face demanding requirements for achieving the innovative 

features and capabilities of the smart grid paradigm. In this 

context power quality (PQ) is a key-task [1]. In fact, the 

increasing penetration of renewable energy power plants, 

power electronic devices, and (in the near future) plug-in 

electrical vehicles charging stations has boosted 

considerably the harmonic pollution level and transient 

phenomena effects in the distribution grid. For these 

reasons the demand for widespread monitoring systems is 

crucial for properly handling PQ phenomena [2]. 

RSE manages the research monitoring system QuEEN 

(Qualità dell’Energia Elettrica) [3] operating in the Italian 

MV distribution grid since 2006. The system consists of 

nearby 400 measurement devices installed in the primary 

substations uniformly distributed throughout Italy. Each 

measurement unit (MU) perform different power quality 

measurements (e.g. flicker, short voltage interruptions, 

voltage dips (VD) and swells, etc.) as prescribed by the 

IEC-61000-4-30 [4]. The monitoring system is compliant 

with the standard CEI EN50160 [5] so that it automatically 

records VDs from the voltage rms values in terms of 

residual voltage (RV) and dip duration (DD). 

On the other hand, the Italian distribution grid is still 

characterized by a significant presence of isolated neutral 

systems (~25% of MV busbar are operated in this way). 

In this configuration, voltage transformers (VT) 

saturation can occur during particular events (i.e. single 

line-to-ground faults) leading to “false” voltage dips. 

In order to handle this problem a criterion, based on the 

detection of the 2nd harmonic component has been 

implemented in QuEEN. The criterion, developed by 

RSE in cooperation with the Politecnico di Torino [6], [7] 

is able to identify “false” voltage dips with a global 

performance of 87%. Indeed, the 2nd harmonic criterion 

has not a Boolean answer, as in some undefined cases as 

very short false voltage dips or multistage events, it is not 

able to identify the event type (true or false). 

In order to enhance the QuEEN functionalities, RSE has 

recently developed a different approach, based on Deep 

Learning (DL) algorithms in which the “jpg image” of 

the sequence of the rms voltage values associated to a 

voltage dip is adopted as input data (DELFI - DEep 

Learning for False voltage dips Identification), in order to 

try to solve the undefined cases. In this way the classifier 

provides anyway a Boolean answer [8]. The 

performances achieved on a small set of 130 events was 

of 95% [9]. 

Based on these promising results, this paper presents a 

tool that integrate the DELFI application, feeding it with 

voltage signals extracted directly from the QuEEN 

monitoring system database. This application, called 

QuEEN PyService, has been developed in Python 

language and it provides the following automated 

functions: (i) data reading of all voltage dips recorded by 

the QuEEN system MUs; (ii) generation of archive 

containing all the images representing the voltage dips 

sequences of RMS values; (iii) classification of the 

events in terms of their validity by the Deep Learning 

classifier. 

Using this tool, it has been possible to compare the 

performance achieved by the new classifier with those of 

the QuEEN criterion on a broad statistical sample 

consisting of the voltage dips recorded by 61 MUs during 
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the period from 2015 to 2020. For each of these events, the 

DELFI application has been applied. 

The analysis has been performed by evaluating the 

traditional PQ counting indices N2a and N3b from the 

voltage dips classified as true, one after the other, by the 

two criteria. These indices, counting the events occurring 

under the immunity curves for Class 2 and Class 3 

equipment, increase with the number of severe events.  

The PQ analysis results show that the adoption of the 

DELFI classifier leads to an increase of these “severity” 

indices. 

 

 

2. QuEEN PyService Architecture 

 

The QuEEN PyService is an automated tool developed by 

RSE in Python environment. The application interacts 

directly with the QuEEN database. The developed 

functions are mainly focused on advanced analysis of 

voltage dips, even if the architecture can potentially 

manage other types of PQ parameters stored in the QuEEN 

database. In particular, the main purpose has been to 

integrate a DL classifier for the recognition of the validity 

of the voltage dips developed by RSE and described in [8] 

and [9]. The architecture of the application is shown in 

Fig. 1. 

 

 

Fig. 1. Queen PyService Architecture. 

 

The application queries the system by selecting a time 

period and a list of MUs. The following functions are then 

performed: 

• reading of all the voltage dips recorded by the 

selected MUs over the chosen period; 

• generation of an archive of images representing 

the rms values associated with each event, 

however it has been classified (true, false or 

undefined) by the 2nd harmonic criterion; 

• application of the DELFI classifier to each 

voltage dips recorded. 

 

In the following, the architecture of the application and the 

different functions implemented are presented, in more 

detail. The system has been developed in a scalable way, 

so that it can be subsequently integrated into the QuEEN 

system itself or into other dedicated platforms. 

 

A. Interaction with QuEEN Database  

 

Once received the input data, the application directly 

establishes a connection to the server in which all the 

data collected by the MUs are stored in the QuEEN 

database. The QuEEN PyService, queries the database 

through MySQL language getting the following 

information for each voltage dip: 

• MU identification code; 

• start and stop event time stamps; 

• QuEEN validity criterion1 outcome: a field that 

identifies the outcome of the algorithm based on 

the 2nd harmonic evaluation, implemented in the 

MUs firmware [6],[7], that can assume the 

following values: 

o true event (T); 

o not defined event (ND); 

o false event (F); 

• Residual Voltage (RV); 

• Dip Duration (DD). 

 

Moreover, for each recorded voltage dip, QuEEN 

PyService generates an image representing the rms 

values sequence of the line-to-line voltages recorded by 

the MU. The DELFI application is then activated 

providing the images previously generated as input data 

for the DELFI criterion based on Deep Learning 

algorithms. The implemented DL algorithm is presented 

in the next section. 

 

B. DELFI Application 

 

The DELFI (Deep Learning for False Events 

Identification) [10],[11], is an application developed by 

RSE based on Deep Learning (DL) algorithms [12] for 

the recognition of false voltage dips recorded by the 

QuEEN monitoring system. In fact, it is well known that, 

in distribution networks operated with isolated neutral, 

the saturation of voltage transformers can cause a false 

voltage drop at the output of the transducer due to the 

zero-sequence voltage component evolution during faults 

to ground extinction. 

The identification of false events reminds a typical 

“Machine Learning” (ML) and “Pattern Recognition” 

problem. Indeed, the voltage waveforms associated to 

such events show typical aspects (the camel humps and 

Doge’s hat pattern) that should be recognized by a 

properly trained Deep Learning (DL) classifier. These 

typical patterns are highlighted also in the rms sequence 

associated to the voltage waveforms. The voltage 

waveforms and the associated rms sequence values of a 

typical example of a false event are respectively shown in 

Fig. 2 and Fig. 3. 

 

 
1 The criterion relies on 2 parameters (a threshold for the 2nd harmonic 

level and the minimum number of consecutive exceeding of the 

2ndharmonic threshold) and it has to be applied independently to all the 

three phases. 
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Fig. 2. False event: voltage waveforms with the characteristic camel 

humps and Doge’s hat patterns.  

 

Fig. 3. False event: rms voltage values. 

 

In [9], the two types of DL algorithms developed by RSE 

are presented, which use two different type of input data 

for voltage dips: the voltage waveforms and the rms 

sequences. In both cases the input data actually consist of a 

set of “jpg” images of the above-mentioned signals 

associated to false, true and true+false2 voltage dips. The 

models implemented and optimized are based on a 

Convolutional Neural Network (CNN) [12] with only one 

hidden layer. The developed models characteristics can be 

summarized as follows: 

• 80%-10%-10% input data partitioning into the 

Training Set, the Development Set and the Test 

Set respectively; 

• Bayesian optimization (BO) [13],[14] adoption to 

assess the model hyper-parameters; 

• softmax algorithm use as classifier. 

 

The results presented in [9], referring to a small Test Set of 

130 events, show that the model with rms sequences as 

input data achieves the best performance (~95% overall 

accuracy). 

For this reason, in this work, that particular model has 

been chosen for the integration in QuEEN PyService in 

order to assure the availability of a DL classifier in the 

 
2 Multistage events, which usually include both true and false events, due 

to poly-phase grounded faults. 

QuEEN monitoring system. The architecture of the 

adopted model is shown in Fig. 4 while the hyper-

parameters obtained by BO performed in [9] are reported 

in Table I. 

 
Table I. - DELFI Hyper-parameters 

CNN N° of layers 1 

N° of kernel matrix 63 

mini-batch size 33 

learning rate 1.2e-05 

maxEpoch  20 

 

 

Fig. 4. DELFI Architecture. 

 

3. Power Quality Analysis on Voltage Dips 
 

The main goal of the QuEEN PyService application is to 

perform advance PQ analysis on the events stored in the 

QuEEN database. In particular, the main focus of this 

work is to compare the effects that the DL classifier 

could have on the voltage dips characterization in terms 

of severity compared to those shown by the QuEEN 

criterion. 

It is well known that voltage dips severity is determined 

by the events main characteristics, DD and RV, as 

prescribed by CEI EN 50160 standard [5] and reported in 

Fig. 5. Through these characteristics, different indices 

and classification methods have been proposed [5], [15] 

Thanks to these parameters, an evaluation of the 

disturbances impact on the "industrial" user can be 

performed together with the attribution of responsibility 

between DSO (Distribution System Operator) and User. 

The most intelligible parameters are the simple counting 

indices N2a and N3b; these indices respectively count, 

without any kind of weighting, the events that fall below 

the immunity zones for Class 2 [16] (dot-orange line in 

Fig. 5) and for Class 3 equipment [17] (continuous-red 

line in Fig. 5). In particular, the N3b is most significant as 

it counts the number of voltage dips below the so-called 

responsibility curve between DSO and User and could be 
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a possible “candidate” for MV network regulation 

purposes. 

 

 
Fig. 5. CEI EN 50160 Voltage Dips classification and thresholds for N2a 

(dotted-orange line) and N3b (continuos-red line) severe events 

counting indices. 

 

QuEEN PyService computes N2a and N3b first of all for 

each true event in accordance with the corresponding 

algorithm. In fact, these indices are evaluated considering 

both the criteria implemented in the application, namely 

the 2nd harmonic and DELFI classifier. 

On the other hand, the MUs during a specific period, may 

be out of service due to faults or maintenance. For this 

reason, in order to have a significant statistical analysis, it 

is important to define the Equivalent Measurement Point 

(EMP) for the selected monitoring period (typically one 

year). This parameter provides an evaluation of the 

number of measurement devices actually functioning in 

the selected time period and it can be computed as reported 

in (1): 

 MU

MU

actual operation week 

MU
theoretical operation week 

N

N

N

EMP N
N

°

°

°

= °
°




 (1) 

Therefore, the N2a e N3b indices have been computed with 

respect to the EMP (relative indices) providing the level of 

severe events in the network as the number of severe 

voltage dips per measurement point (N°/EMP)3. 

 

4. The Results 
 

The analysis of voltage dips has been performed on 61 

MUs over the last six years from the 2015 to 2020. Each 

voltage dip presents two validity classifications: the former 

performed with the QuEEN criterion and the latter with the 

DELFI classifier. Voltage dips occurred simultaneously 

with the relays trip of High Voltage (HV) line distance 

protections (HV origin events) have been removed from 

the results 4. 

First of all, let us consider results concerning the QuEEN 

criterion: the voltage dips trends with respect to the three 

event types are shown in Fig. 6 and listed in percentage 

values in Table II: the total number of voltage dips 

fluctuates over the years ranging from a minimum value of 

5760 events, in 2020, to a maximum value of 9136 events, 

in 2019. It is worth to highlight that not defined events are 

not classified events namely when 2nd harmonic 

 
3 The use of this parameter, rather than the number of MV bus bars 

monitored by the system makes the PQ analysis more precise. 
4 This information has been read automatically by the QuEEN PyService 

from the QuEEN Database. 

component criterion fails, and its occurrence is far to be 

neglected. 

On the other hand, the percentage ratios between the 

different categories are maintained: averagely, the 78% 

are classified as true events while false and not defined 

events represent respectively the 12% and 11% of the 

total number of voltage dips. 
 

 

Fig. 6. Voltage dips trends from 2015 to 2020: partition into the three 

QuEEN criterion categories. 

 

Table II. – Trend of QuEEN criterion events types percentages. 

Categories [%] 
QuEEN 

T F ND 

2015 74.6 % 14.0 % 11.4 % 

2016 77.5 % 11.5 % 11.0 % 

2017 78.2 % 11.7 % 10.1 % 

2018 78.9 % 9.9 % 11.3 % 

2019 79.6% 10.4 % 10.0 % 

2020 76.3 % 12.1 % 11.6 % 

 

Now let us consider, the results achieved by the DELFI 

classifier: the annual trends are reported in Fig. 7 while 

results, expressed in percentage values, are listed in Table 

III. 

 

 

Fig. 7. Voltage dips trends from 2015 to 2020: partition into the three 

DELFI classifier categories. 
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Table III. – Trend of DELFI classifier categories percentages. 

Categories [%] 
DELFI 

T F T+F 

2015 84.3 % 13.9 % 1.8 % 

2016 86.5 % 12.1 % 1.4 % 

2017 86.2 % 12.0 % 1.8 % 

2018 85.6 % 12.0 % 2.4 % 

2019 85.8 % 12.6 % 1.6 % 

2020 83.2 % 15.1 % 1.7 % 

 

Comparing the DELFI classifications with the QuEEN 

criterion ones, it can be stated that the number of detected 

true events is significantly increased reaching almost the 

85% of the total number of voltage dips monitored. On the 

other hand, the number of false events remains almost the 

same passing from the 12% (reached by the QuEEN 

criterion) to nearby the 13%; moreover, the number of 

true+false event represents only the 1.8%. From these 

preliminary results it can be stated that the not defined 

events monitored by QuEEN are mostly classified as true 

events by the DELFI algorithm. 

Now let us consider the PQ indices presented in Section 3. 

The N2a and N3b trends over the years are shown in Fig. 8 

for both the classification criteria; the indices are 

expressed in terms of number of events per equivalent 

measurement point (N°/EMP). 

 

Fig. 8. N2a e N3b annual trends: comparison between QuEEN criterion 

and DELFI classifier. 

By looking at the achieved results, the following 

conclusions can be drawn: 

• referring at first to true events by the QuEEN 

criterion, N2a has an average value over the 

considered period of 33.2 N°/EMP while N3b 

reaches an average value of 14.8 N°/EMP; 

• the application of the DELFI classifier 

considerably increases PQ indices: the average 

values for both N2a and N3b reach respectively 

40.0 N°/EMP and 20.6 N°/EMP. 

 

This means that a considerable number of events 

categorized as not defined or false by the QuEEN criterion 

but classified as true by the DELFI algorithm, significantly 

contributes to N2a and N3b evaluation. 

In order to evaluate the percentage difference between 

the two classification methodologies, the following 

parameter has been defined: 

 DELFI QuEEN

QuEEN

N N
100%

N

x x

x

−

∆ = ⋅  (2) 

where x represents the considered index. Results are 

reported in Table IV for each considered year together 

with N2a e N3b values. 

 
Table IV. – N2a and N3b comparison: QuEEN vs. DELFI. 

 
N2a N3b 

QuEEN  DELFI  Δ [%] QuEEN DELFI Δ [%] 

2015 37.6 46.1 +22.7 17.8 24.9 +40.3 

2016 29.5 37.3 +26.5 14.1 20.7 +46.3 

2017 31.1 36.9 +18.6 13.7 18.9 +37.3 

2018 35.7 42.0 +17.7 15.9 21.3 +33.9 

2019 38.6 45.6 +18.0 16.0 22.1 +38.2 

2020 26.6 31.9 +22.7 11.5 15.7 +40.3 

 

By looking at the listed results, it can be noticed that 

there is a systematic trend: N2a evaluated by the DELFI 

classifier is always higher, on average by 20.6%, than the 

same index calculated according to the QuEEN criterion, 

while the N3b increase is equal to 38.8%. This means that 

a considerable number of events classified as true only 

by the DELFI algorithm contribute to both indices with a 

prevalent impact on N3b. Therefore, the adoption of a 

more accurate validity classifier has a not negligible 

impact on the evaluation of the PQ indices N2a and N3b. 

 

5. Conclusion 
 

In this paper the development of an automated tool, 

called QuEEN PyService, has been presented, aimed to 

make advanced voltage dips analysis available in the 

QuEEN MV network monitoring system. First of all this 

application has allowed the integration of the DELFI 

classifier, based on Deep Learning techniques and using 

voltage rms sequences images as input data. The DELFI 

classifier is aimed to assess the validity of voltage dips 

and clean their statistics from voltage drops due to the 

measurement transformers saturation. The classifier 

provides always a Boolean classification (true, false and 

true+false). This allows a more accurate classification of 

the events respect to that achieved by the 2nd harmonic 

component criterion implemented in the QuEEN system, 

as it provides a certain number of not defined events. 

Thanks to QuEEN PyService, the voltage dips recorded 

by 61 MUs between 2015 and 2020 have been 

considered: based on these data PQ analysis have been 

focused on a N2a and N3b more accurate evaluation. 

Results show that the not defined cases by the QuEEN 

criterion are mostly classified as true by the DELFI 

classifier. Those events contribute a lot to both N2a and 

N3b. As to the DELFI classifier, it boosts the above-

mentioned indices respectively of the 20.6% and the 

38.8% with respect to those evaluated by the QuEEN 

criterion. 
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