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Abstract. A new fuel process to convert fats and oils to 
hydrocarbon fuels has been under development since 2006 at 
North Carolina State University.  The process consists of three 
main reactions steps, with the provision for optional burning of 
glycerol produced in step one to provide heat inputs for all three 
steps. 
 
This work describes a study involving modeling, analysis, and 
design optimization to predict the energy conversion efficiency 
of the overall process.  The study predicts an overall efficiency of 
89.6%. 
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1. Introduction 
 
A new fuel process to convert fats and oils to hydrocarbon 
fuels has been under development by a multidisciplinary 
group at North Carolina State University since 2006.  The 
process consists of three main reaction steps [1], [2]: 
 

1. Thermal hydrolysis of triglycerides to form free 
fatty acids (FFA) and glicerol (GL), 

2. Thermocatalytic deoxygenation of FFA to form 
straight-chain alkanes (n-alkanes), and 

3. Thermocatalytic reforming of n-alkanes to 
produce a mixture of compounds to meet the 
specifications for jet fuel, diesel fuel, or gasoline 
(petrol). 

 
In addition, glycerol produced in step 1 may be cleanly 
combusted to provide heat inputs to all three of the above 
reaction steps [3]-[5].   
 
Experimental studies by the NC State team and others 
have investigated the reaction steps as well as the 
underlying catalyst properties [6]-[35].   

 
A parallel effort, presented here, has focused on 
modeling, analysis, and optimization of designs for the 
continuous process, to determine the optimal energy 
conversion efficiency [36].  A conversion efficiency of 
90% or better is considered to be the long-term goal.  
Since the biofuel product is essentially energy in liquid 
form, the energy conversion efficiency has a direct 
bearing on the economics and the sustainability of the 
process.   
 
The energy conversion efficiency is defined as 
 

𝐸𝐶𝐸 =
𝑐𝑜𝑚𝑏𝑢𝑠𝑡𝑖𝑜𝑛  𝑒𝑛𝑒𝑟𝑔𝑦  𝑜𝑓  𝑝𝑟𝑜𝑑𝑢𝑐𝑡 − 𝑒𝑛𝑒𝑟𝑔𝑦  𝑖𝑛𝑝𝑢𝑡

𝑐𝑜𝑚𝑏𝑢𝑠𝑡𝑖𝑜𝑛  𝑒𝑛𝑒𝑟𝑔𝑦  𝑜𝑓  𝑓𝑒𝑒𝑑𝑠𝑡𝑜𝑐𝑘
 

 
For a three-step process, the overall efficiency is the 
product of the conversion efficiencies of each step: 
 

𝐺𝑜𝑎𝑙 = 𝐸𝐶𝐸!"!#$ = 𝐸𝐶𝐸!𝐸𝐶𝐸!𝐸𝐶𝐸! = 0.90 

 
In order to achieve an overall conversion efficiency of 
90%, the efficiency of each step needs to be substantially 
higher, on the order of 97%: 

 

𝐸𝐶𝐸! = 0.90! = 0.965 

 
The approach taken is to model each reaction step using 
the ASPEN simulation package.  The output of the 
simulation is imported into a spreadsheet.  Additional 
calculations are added to keep track of the energy content 
of all reactants, products, and gases; energy losses due to 
process inefficiencies; and material and energy balances.  
The layout of a typical spreadsheet is seen in Table 1. 
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The blue field is the output of the Aspen simulation.  The 
columns represent the process streams, and the rows 
contain the properties of each stream.  The first few rows 
provide the molar flow rates of each of the component 
species present.  The salmon-colored field at the right 
keeps track of the energy of combustion of each 
component species.  The purple field contains the mass 
balance calculations, and the green field holds the energy 
balance calculation.  At the lower right corner of the green 
field, the energy conversion efficiency is computed.   

Our approach has been to model each reaction step as a 
baseline process, then to model various optimizations, 
comparing the conversion efficiency of each optimization 
to the baseline.   As it turns out, the challenge for all three 
steps has been to optimize ancillary operations such as 
separation processes, rather than the desired reactions 
themselves.	
  	
  	
  
 
2. Step One: Hydrolysis of Triglycerides 
 
Process step 1 converts triglycerides to free fatty acids by 
thermal hydrolysis.  The reaction produces a byproduct of 
glycerol, which is leaves the reactor mixed with excess 
water, in a mixture known as sweetwater.  The baseline 
process has an energy conversion efficiency of around 
91%, depending on the feedstock.  This can be optimized 
to around 92 to 95%, depending on the feedstock, without 
attempting to recover the sweetwater.  However, this 
approach throws away roughly the same mass of water as 
the feedstock, and discards the glycerol byproduct as well.  
If conventional distillation is used, the energy conversion 
efficiency is about the same as the previous, optimized 
case, but the water requirement is reduced to slightly more 

than stoichiometric, and high-purity glycerol is available 
as a fuel or saleable commodity.  The best results were 
obtained by membrane separation.  Our design calls for a 
reverse osmosis (liquid-vapor) process to eliminate about 
80% of the water from the sweetwater, followed by a 
pervaporation step, resulting in very high purity of the 
water and glycerol streams.  With suitable heat and 
material recovery, the process efficiency of step 1 with 
membrane separation is 96%, or 98.7% counting the 
combustion energy of the recovered glycerol.  This is the 
recommended approach for step 1.  The process diagram 
is shown in Figure 1. 
 
3. Step Two: Deoxygenation of Free Fatty 

Acids 
 
Process step 2 removes one carbon atom and the two 
oxygen atoms from each free fatty acid molecule, to form 
a long-chain alkane.  There are two competing reactions.  
The desired reaction is decarboxylation: 
 

𝑅𝐶𝑂𝑂𝐻 +
!"#,!! 𝑅𝐻 + 𝐶𝑂! 

 
There is a competing reaction called decarbonylation, 
which produces carbon monoxide as a byproduct: 
 

𝑅𝐶𝑂𝑂𝐻 + 𝐻!
!"#,!! 𝑅𝐻 + 𝐶𝑂 + 𝐻!𝑂 

 
In addition to producing unwanted carbon monoxide, the 
decarbonylation reaction shortens the life of the catalyst.  
The decarbonylation reaction can be minimized, but not 
eliminated, by limiting the amount of hydrogen gas.   

Table 1.  Schematic of spreadsheet analysis for energy conversion efficiency calculation. 
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The challenge for step 2 is to eliminate the carbon 
monoxide, recover the carbon dioxide, and re-use the 
excess hydrogen as well as the helium carrier gas.  Our 
solution is to recover the carbon dioxide by compressing 
the gas mixture further, then cooling the mixture until the 
carbon dioxide condenses out.  The remaining carbon 
monoxide is then catalytically converted to biomethanol 
by the reaction 
 

𝐶𝑂 + 2𝐻!
!"#$%!"! 𝐶𝐻!𝑂𝐻 . 

 
This is a standard industrial process for synthesizing 
methanol.  The remaining gases are then hydrogen and 
helium, which can be returned to the process for re-use.  
With suitable heat and material recovery, the overall  
energy conversion efficiency for step 2 is 95.7%.  The 
recommended optimization for step 2 is shown in Figure 2. 
 
 
4. Step Three: Reforming of Alkanes 
 
In process step 3, the straight-chain alkanes are converted 
to a mix of compounds that is required in order to meet all 
the standards for the desired fuel.  The alkanes are first 
isomerized and split in a reaction known as hydrocracking.  
The splitting occurs in such a way that as many short 
chains are created as there are longer chains.  As a result, 
not all of the resulting molecules are suitable for jet or 
diesel fuel.  Therefore, the strategy is to make as much jet 
fuel as possible using the longer chains, and to make 

gasoline from the shorter chains.   
The cracked and isomerized molecules are divided into 
four fractions.  The lightest of these are gaseous 
hydrocarbons.  The next group is suitable for gasoline 
only.  The third fraction can be used for either gasoline or 
jet fuel, and the fourth fraction is suitable for jet fuel 
only.   
 
We take the third fraction and run a second reaction on it, 
which creates cyclic and aromatic compounds.  The 
resulting compounds are then divided for use in the 
gasoline and jet fuel products.  The final product streams 
are 1) gaseous hydrocarbons (fraction 1 above), 2) 
gasoline made from fraction 2 mixed with cyclic and 
aromatic compounds made from fraction 3, and 3) jet fuel 
made from cyclic and aromatic compounds made from 
fraction 3, mixed with fraction 4 above.   
 
In order to get clean splits between the fractions, the 
fractionation column requires a great deal of energy.  The 
column is modeled as a series of three separate columns.  
The energy requirement decreases in each successive 
column.  The heat duty can be reduced by the use of heat 
pumps to transfer energy from the cooler distillation unit 
at the top of the column to the hotter reboiler at the 
bottom.  Because of the high temperatures involved, 
special refrigerants must be used.   
 
The heat pump for the first column operates between 
205°C and 359°C.  We investigated a gas-phase heat 
pump using carbon dioxide as the refrigerant, vs. a 
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Figure 1.  Process step 1 with membrane separation of sweetwater, heat and material recovery.  The energy conversion efficiency 

is 98.7% counting the energy value of the purified glycerol byproduct. 
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Figure 2.  Process step 2 with carbon dioxide recovery, conversion of carbon monoxide to biomethanol, heat and material 
recovery.  Energy conversion efficiency is 95.7%. 
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conventional heat pump using refrigerant R-110, or 
hexachloroethane.  The second approach is more efficient 
when real-world devices are considered.  The heat pump 
for the second column uses refrigerant R-140, or 1,1,2-
chloroethane.   
 
The baseline process has an energy conversion efficiency 
of only 83.5%.  This can be raised to 90.4% using heat and 
material recovery.  When both heat pumps are added, the 
efficiency is raised to 94.9%.  The process diagram for 
step 3 is given in Figure 3.  
 
5. Conclusion 

 
The overall energy conversion efficiency for the process is 
the product of the stepwise efficiencies.  Thus 
 

𝐸𝐶𝐸 = 0.987 0.957 0.949 = 89.6% 
 

This is within a percentage point of the original goal of 
90% efficiency.   
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