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Abstract. The last decade has seen a dramatic rise in 

renewable energy converters connected to the grid, consisting 

mostly of intermittent distributed generators on the medium or 

low voltage grid. Due to this evolution in energy transmission, 

improved monitoring and control of the distribution grid is 

becoming mandatory in order to efficiently integrate the new 

power sources and guarantee power quality, efficiency and 

reliability. Our paper describes a reliable and precise power grid 

impedance estimation method using an innovative scheme to 

control the Pulse Width Modulator’s pulse pattern on the 

inverters, in order to inject broad spectrum identification patterns. 

The generated harmonics and inter-harmonics will allow the 

online computation of the complete spectrum of the grid 

impedance at the Point of Common Coupling during normal 

operation. Simulations in typical grid situations verify that the 

proposed algorithm is robust to a realistic environment and can be 

used for automated feedback control.   
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1. Introduction 

 
This last decade brought a substantial growth in renewable, 

distributed energy production in industrial countries. Due 

to the ‘20% renewables by 2020’ goal targeted by the 

European Community, this trend will accelerate and 

Distributed Generation (DG) will represent a significant 

portion of the European energy mix. A large part of the 

new renewable energy sources consists of wind and 

photovoltaic energy (PV). As these are by nature variable 

energy sources, careful planning is required to integrate 

them harmoniously and efficiently. The improved 

sustainability of energy supply requires optimized regional 

grid use and increased reliability and security of supply. 

While the High Voltage (HV) Grid control mechanisms are 

well established, the Medium Voltage (MV) Grid, where a 

large amount of DG is feeding in its energy, is sparsely 

observed and subjected to power quality and stability 

issues. In order to address these concerns, the MV network 

must be tightly monitored. However replicating the High 

Voltage infrastructure on the MV would require large 

investments. With the shift to renewable energy and wide 

spread inverter based generators, it is crucial to integrate a 

real-time monitoring of the relevant parameters of the grid 

at key points. An online monitoring of the grid impedance 

allows the operators to react instantaneously to critical 

conditions and enables the correct behavior of DG.  

 

An impedance analysis on the complete harmonic 

spectrum reveals properties of the grid that are hard to 

detect through traditional methods.  Islanding conditions 

are situations during which a distributed generator will 

feed a local sub-grid, while the main grid is shut down 1. 

Such situations are dangerous if not detected promptly, and 

can be tracked continuously through sudden impedance 

variations. The grid impedance spectrum also indicates the 

resonance frequencies in the network and major harmonics 

induced by the load capacitance [2].  In [3], the impedance 

is used for the inverters droop control optimization, by 

adjusting the amplitude and the frequency of the inverter 

output voltage for controlling active and reactive power 

delivery. The research in [4] discusses the importance of 

the grid impedance to assess the voltage stability of the 

grid tie inverter and suggests that it is crucial to enforce 

defined conditions on the ratio of the voltage output 

impedance and the grid to guarantee stability. 

 

Various techniques can be used for impedance 

measurement, and these typically require dedicated 

hardware, consisting of a signal injector, voltage and 

current measurement device followed by signal processing 

performed on a digital controller.  Online measuring 

methods can be categorized in two main branches: passive 

and active system identification. Passive methods rely on 

non-fundamental noise present in the grid, e.g. transient 

noise and converter noise. [5] uses the switching frequency 

of the inverters active-shunt-filter (ASF) to act as a 

naturally occurring harmonic, and estimates the impedance 
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based on its magnitude variation. This class of 

identification methods has the disadvantage of relying on 

harmonics and inter-harmonics distortions existing at all 

times. As their occurrence and amplitude cannot be 

guaranteed, it is not an acceptable solution in critical 

situations. Active methods distort the voltage and current 

by injecting signals, measure the grids response, and obtain 

relevant information through signal processing. Numerous 

active methods have been proposed in recent years, some 

focusing on effects of transients, others measuring the grid 

response to steady-state signals. In [6] the power inverter 

injects a 75 Hz signal in the grid, and detects through 

impedance changes islanding situation which arises. The 

system described in [7] uses impedance measurement at 

DG in order to mitigate the effects of grid harmonics and 

to drive an active shunt filter smoothing out the major 

harmonics. The impedance is calculated through the 

injection of a sum of sinusoids. An interpolation provides a 

complete impedance spectrum at the Point of Common 

Coupling (PCC). The solution provided in [8] injects short 

triangular pulses with rich harmonic content to estimate the 

grid impedances full spectrum. The author in [2] creates a 

harmonic-rich signal by switching on and off a resistive 

load to create disturbances in the current and voltage flows. 

While all the mentioned techniques provide satisfactory 

solutions to the issues they were designed to solve, they 

typically require dedicated hardware additions to the 

currently deployed infrastructure. For some, the Total 

Harmonic Distortion (THD) and crest factor injected are 

too high for grid codes such as EN 50160 [15], the rules 

enforced by CREOS on the Luxemburgish distribution 

network. Thus, scaling the aforementioned 

implementations on a large number of inverters in fragile 

networks e.g. weak high-impedance grids could render 

stability problems.   

 

This paper investigates an impedance measurement method 

through the use of Pseudo-Random-Binary-Sequences 

(PRBS). These patterns have thoroughly been used in 

various engineering fields e.g. telecommunications and 

information theory, and their inherent properties suit well 

for system identification. The purpose of our impedance 

identification technique is to improve upon existing 

methods on several aspects. Firstly, our method requires 

minimal hardware addition to currently operating grid-tie 

inverters. Secondly, the grid code is respected, and high 

amplitude transients are not injected. Thirdly, a wide 

enough impedance spectrum is estimated, so that the data 

can be used for a wide range of applications. Fourthly, the 

latency is low enough for time critical applications e.g. 

inverter power control or islanding detection. Finally, the 

injection losses for impedance detection are minimal, and 

must not damage components present in the system. 

 

This paper is structured as follows: Section 2 presents a 

description of the PRBS patterns, depicts their 

implementation method, and details their spectral and 

temporal properties.  Section 3 portrays a typical grid-tie 

inverter setup, whose Pulse-Width Modulation (PWM) 

control has been modified in order to overlay PRBS 

patterns on top of the fundamental. The complete setup for 

the impedance measurement and the calculation are 

presented in Section 4. In order to validate the theoretical 

calculations, Section 5 illustrates simulations and analysis.

   

2. Pseudo-Random Binary Sequence 

Properties 

 

The Pseudo-Random Binary sequences are bit streams of 
‘1’s and ‘0’s occurring randomly, but in a predefined 
manner. They have unique properties that make them very 
suitable for excitation signals in characteristics analysis and 
system identification. They are generated by a series of shift 
registers, combined with logical XOR gates. The number of 
shift registers and the position of the XORs determine the 
run length of the series and are defined by its polynomial, as 
shown in Figure 1. Thus, for a given seed, a polynomial of 
length L will allow the generation of a deterministic 
pseudo-random binary sequence of ‘1’s and ‘0’s of 
    elements. 

 

 

 

 

 

 

 

 

 

 

Fig. 1.  A Pseudo Random Generator with polynomial 1+x3+x4, 
generating a repeated random sequence of 15 bits 

Several properties of the PRBS sequence make it an ideal 
candidate for grid identification: 

Spectrum: Depending on the relationship between the 
code-length, sampling frequency and code frequency, the 
PRBS exhibits a white noise like spectrum for a certain 
frequency range, with zeros occurring at multiples of the 
PRBS clock sampling frequency. For impedance 
determination, a high amplitude spectrum is necessary in 
the desired range to achieve optimal energy distribution and 
accuracy.  This has to be mitigated with the injected THD 
in order to find the adequate compromise between Signal-
to-Noise Ratio (SNR) and harmonic pollution. The code 
length and its sampling frequency limit the resolution of the 
impedance spectrum that will be excited. The objective is to 
enable an injection method that will cover the desired 
range, with the hardware constraints of an inverter. 

 

(2
4
-1=15 bits) 

 

1 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1 1 1 1 0 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

  

clock 

D1   Q1 D1   Q1 D1   Q1 D1   Q1 
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White noise behavior: The PRBS exhibits white noise-
like properties, and thus correlation techniques, eliminating 
measurement noise described in [9], can be utilized for 
identification purposes. 

Ease of generation and implementation: The digital 
logic required for PRBS implementation consists of shift 
registers and XOR gates and can be implemented on a very 
modest digital controller. 

Low crest factor: Compared to other active injection 
techniques mentioned in this paper, the PRBS is the one 
most likely to pass grid codes such as EN 50160. In fact, its 
operational crest factor is very low and the instantaneous 
THD is significantly less than other active identification 
methods.  This is accomplished without compromising 
accuracy, since the low amplitude pulses, which are 
aggregated over the complete sequence, provide sufficient 
energy for identification. 

Easily Customizable: The PRBS can easily be 
lengthened or have its amplitude increased so as to improve 
SNR and spectrum range. Thus, a short sequence could be 
used for coarse estimation, and a longer one for a more 
refined spectrum. 

3. PRBS on a Single Phase Inverter 

A. Grid connected inverter 

The system topology is depicted in Figure 2. It 
comprises a DC Voltage source, with a pulse-width 
modulation Voltage Source Inverter (VSI) connected to the 
grid through a low pass LCL-filter. The impedance of the 
grid is modeled by an impedance   , consisting of a 

resistive component    an inductive component   . While 

more complex grid models exist, for our purposes, a basic 
series inductive-resistive impedance, combined with an 
ideal source supply, is sufficient. Typical modern grid tie 
inverters operate with LCL filters, due to their superior 
filtering capabilities at higher frequencies [10]. The main 
issue of the LCL filter is its resonance frequency induced 
by the capacitance in parallel between the inductors. In 
order to reduce the gain of the resonance, a damping 
resistor is connected in series with the capacitor. This setup 
limits the currents passing through the capacitor and 
attenuates the voltage gain at PCC for the resonant 
frequency.  

An analytical model of the system has been established in 
[11]. The resonance frequency of the LCL filter is 
expressed by:  

     
 

  
√

          

    (      )    

     

 From (1) it can be seen that the resonant frequency of 
the LCL filter is dependent on the grid impedance and an 
increase in the grid inductance triggers a decrease of the 
resonant frequency. Thus, in typical implementations, the 
system is designed to have the resonant in the range  

             

This constraint prevents its interference with the 
fundamental and the PWM switching frequency. As 
described in the Section 4, it will amplify the excitation 
signals over the range [0.5             , and improve 
identification in that range. 

 

 

Fig. 2. Grid-connected inverter with LCL filter and time-variant and 
frequency-dependent power grid 

B. PRBS implementation on PWM 

A common PWM architecture for a single phase grid-tie 

inverter is depicted in Figure 2. It uses high, low and zero 

voltage levels. The resulting PWM signal is used to steer 

one half of an H-bridge. The other half of the H-bridge 

controls the polarity of the voltage across the load, and is 

triggered by a simple square wave of the same frequency 

and in phase with the sine signal. Further details about the 

structure and functionality of a three level PWM can be 

obtained in [12].  

 

In order to implement the PRBS pattern, the carrier shape 

is altered so that the PWM naturally overlaps the PRBS 

with the reference signal to be generated. As shown in 

Figure 3, a ‘1’ PRBS code corresponds to a slightly 

elevated triangle peak for one pulse, and a ‘0’ PRBS code 

corresponds to a lowered peak. The original PWM 

response is depicted in blue in Figure 3, the altered one in 

red. The effect on the pulse train is that ‘1’ pulses are 

slightly widened compared to the original PWM, ‘0’ pulses 

slightly narrowed.  Using these constraints, the PRBS code 

frequency will be limited to the inverters switching 

frequency. Its spectrum, shown in Figure 4, is typically 

wider than the frequency range needed for identification 

purposes.   
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Fig. 3. Implementation of a PRBS pattern on inverter’s PWM pulses       
Blue: original Pulses, Red: modified Pulses with ‘1’,’1’,’0’,’1’ code 

Figure 4 highlights the spectral properties of the PWM 

with PRBS. Figure 4-A presents the normalized spectrum 

at the PWM. The peaks extending beyond the plot are due 

to the fundamental and the switching frequency of the 

PWM. On the blue plot, corresponding to the PRBS 

injected pattern, it can be seen that the complete spectral 

range has been elevated, which is the desired property for a 

broad impedance detection. 

  

 
Fig. 4. Spectrum at Inverter Output                                                                 

4-A: Voltage spectrum at the PWM, red: original, blue with PRBS                 
4-B: Voltage spectrum at PCC, red: original, blue with PRBS 

The slight noise in the spectrum is principally due to the 

uneven ratio between the data sampling and PRBS code 

frequency. The minimal decrease of the switching 

frequency peak can be interpreted as the energy from the 

switching frequency being redirected to the intermediate 

frequencies. Figure 4-B shows the spectrum of VPCC, 

behind the LCL-filter. The high frequency harmonics are 

dampened extensively, and beyond 3∙    , the generated 

excitation is not sufficient for adequate impedance 

detection. In the simulation settings      will be set to 1263 

Hz according to equation (1) and the grid and filter 

parameters set in Table II. 

 

The amplitude of the PRBS spectrum depends on the 

magnitude of the alteration of the carrier peaks. Simulation 

results show that even minimal alterations provide 

excellent results, since slight pulse modifications of the 

PRBS are aggregated over many carrier pulses. Thus 

longer PRBS periods can be used to increase SNR.  

 

4. Grid Impedance Determination 

 

The setup of this research is described in Figure 2. In 

normal operation, the DG inverter, operating at 12.8 kHz, 

provides active and reactive power to the grid, and its 

spectrum, shown in Figure 4, contains the fundamental 50 

Hz and harmonics consisting mainly of the inverter 

switching. Periodically, during four fundamental cycles, a 

1024 bit PRBS burst is injected, modulated on top of the 

50 Hz sinusoid, according to the method detailed in the 

previous section. During the burst, the spectrum of the 

PRBS is overlapped over the naturally generated 

harmonics. Using the VPCC and IPCC measured at the point 

of common coupling of the inverters power control loop, 

the complex impedance is calculated by the voltage to 

current ratio:  

       
       

       
       

 

       
               

               
       

 

In the equations above,          and         represent the 

complex line voltage and current at a given frequency. 

Their magnitude is          and         and phase       

and      .       is the complex grid impedance at a given 

frequency, its amplitude is       and its phase      . The 

objective is to obtain the grid impedance at PCC for all 

harmonics and inter-harmonics in order to get the complete 

spectrum. Thus: 

     
   (    )

   (    )

                     

where ‘DFT’ denotes the Fourier transform of the time 

domain measurement of the voltage and current at the 

PCC. The PRBS codes are aligned and synchronized with 

the fundamental, and performing the Fourier transform 

over four full fundamental cycles will render results 

containing minimal spectral leakage. Furthermore, the 

presented technique has a latency of 80ms, and is fast 
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enough for power grid related applications, which have 

time constants that are usually larger by at least one order 

of magnitude. In the next section, analytical data on SNR, 

THD and impedance accuracy will be discussed using 

Matlab simulations.  

 

5. Simulations 

 

Simulations were carried out using Matlab with Simulink. 

A detailed discrete-time model of a single phase grid-

connected inverter has been considered for the 

performance of the proposed estimation method. The 

system structure is depicted Figure 2 and its operating 

parameters are listed in Table I. The LCL filter parameters 

are selected according to [11]. A 1024 PRBS code is 

injected, with the code frequency set to the carrier 

frequency: 12.8 KHz. The 1024 codes are injected in 80ms 

and Figure 5 shows a large zoom on the grid voltage’s 

evolution at PCC for the nominal case and with PRBS 

injection. The PRBS induced variation tends to be 

relatively small, the main harmonics are the switching 

harmonics and a jitter type distortion can be seen 

overlapped on it with the PRBS mode.   
 

Table I. - Parameter values used in simulations 

Parameter and designation  

Filter inductance Lf1 17.7 mH 

Filter inductance Lf2 05.7 mH 

Filter capacitance Cf 3.45 µF 

Filter damping resistance Rd 11.2 Ω 

PWM switching frequency fPWM 12.8 kHz 

Vg grid voltage 20,0 kV 

Sampling frequency 10e5 Hz 

Grid resistance 0.08 Ω 

Grid inductance 0.4 mH 

PRBS code length 1024 

PRBS carrier amplitude modification  5% 

 

 
Figure 5: Time domain plot of VPCC – Blue: original Voltage curve, Red: 
modified Voltage curve with ‘1’,’1’,’0’,’1’ code 

A controller with a sampling frequency of 10 KHz has been 
considered. It encompasses the control model PWM signal 
generation, inverter behavior and current and voltage 
sampling with 16-bit quantization. Grid resistance and 
inductance are set respectively to          and    
      , which renders an impedance at the fundamental 
frequency of          . 

 

Fig. 6. Impedance estimation at PCC – Blue: theoretical impedance, Red: 
estimated through PRBS injection 

 

Fig. 7. Impedance estimation at Inverter output – Blue: theoretical 
impedance, Red: estimated through PRBS injection 

The calculated impedances from online transfer function 
identification are depicted in Figure 6 and 7. Figure 6 shows 
the impedance at PCC. The expected RC spectrum is shown 
in blue, and the red plot is the result of the real-time 
identification technique. No smoothing or averaging 
process has been applied, in order to highlight the 
performance of the proposed method. The results are quite 
accurate, and due to the correlation properties of the PRBS, 
very resilient to noise. Thus, good results can be obtained in 
difficult conditions, where the amplitude of the injection is 
much lower than the environmental noise. 

Table II shows the harmonic ‘pollution’ injected by the 
proposed measurement technique for different injection 
strengths values. Excellent results can be obtained with very 
little distortion, 10% above the natural distortion present in 
the PWM harmonics. With higher injection amplitude, the 
rate of return declines. Finally, investigation has shown that 
the remaining impedance estimation error is mainly due to 
quantization error and spectrum leakage and could be 
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improved by lengthening the PRBS code sequence or 
applying windowing filters such as the Blackman window. 
This in turn would deteriorate the THD and execution 
latency. Therefore, a compromise has to be made in order to 
find the right balance. A 6% estimation error is very 
promising and further research and optimization would 
improve the results even more. 

Table II. - THD and Impedance Error for various injection magnitudes 

 no prbs prbs 
0.5% 

prbs 1% prbs 3% 

THD 1.51e-04 1.67e-4 1.86e-4 2.42e-04 

Impedance 
Estimation 
Error 

N.A. 10.44% 7.29% 7.08% 

 

6. Conclusions 

 

The number of distributed power electronic based 

generators connected to the grid is increasing and their 

influence on grid infrastructure, stability and reliability is 

growing. The real-time knowledge of the equivalent grid 

impedance at the inverter’s PCC is crucial for filter design, 

power quality evaluations and grid status determination. 

An advanced multi-purpose real-time estimation method 

for frequency dependent grid impedance determination 

method has been presented in this paper. The method is 

based on PRBS sequences, which have been extensively 

used in system identification, communications and 

information theory. An innovative technique injecting 

PRBS on the inverter’s Pulse-Width-Modulators has been 

introduced and a detailed description has been provided. 

Practical applications such as islanding detection and 

inverter tuning in distorted grid conditions have been 

discussed. 

 

The proposed method estimates the equivalent grid 

impedance over a significant frequency range with a high 

resolution. It provides a high degree of flexibility; longer 

injections provide higher frequency resolution and 

accuracy, shorter patterns reduce latency and THD. The 

proposed technique will be implemented in a prototype 

converter at SnT’s Netpower Laboratories in order to 

verify the performance in real settings and confirms the 

simulations research. Further research aiming to identify 

the power network parameters will be carried out as well. 
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