
 

International Conference on Renewable Energies and Power Quality (ICREPQ’14) 

Cordoba (Spain), 8th to 10th April, 2014 
Renewable Energy and Power Quality Journal (RE&PQJ) 

 ISSN 2172-038 X, No.12, April 2014 

 
 

 

 

Sensor optimum location algorithm for estimating harmonic sources injection in 

electrical networks 

 
Luis F. Beites1, Manuel Alvarez2 and Agustin Díaz3 

 

1 Department of Electrical Engineering 
2 Department of Mathematics 

E.T.S.I.I., Universidad Politécnica de Madrid 

José Gutierrez Abascal, 2 28006 Madrid (Spain) 

Phone/Fax number:+0034 913363178, e-mail:  luis.fbeites@upm.es malvarez@etsii.upm.es 

 
3 Red Eléctrica de España, REE 

Paseo del Conde de los Gaitanes 177, 28109 Alcobendas (Madrid) 

agustin.diaz@ree.es 

 

 

 

 

Abstract. Today, the presence of disturbing loads in low, 

medium and also directly in high voltage networks is producing a 

growing presence of harmonics and unbalance in transmission 

levels. Economic reasons difficult the installation of harmonic 

measurement devices in all the buses of the system. Instead, it 

would be possible to install harmonic measurement equipment in 

selected buses, in a fraction of the buses of the network. With 

them, estimation of harmonic current injection can be made. 

In this paper, a method to estimate the best buses to install 

harmonic voltage measurement equipment is presented. Based on 

the configuration of the network supplied by the TSO (by means 

of its impedance matrix), the method allows to determine which 

are the best buses.  

The method is being implemented for the Spanish TSO REE, to 

allow the watching of the harmonic and unbalanced presence in 

the Spanish transmission network, with the actual equipment and 

to determine the future equipment installation buses. It is 

developed by the UPM Electrical and Mathematics Departments 

under an investigation project (GENINF) with REE funding. 
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1. Introduction 
Traditionally, the harmonic sources considered in 

transmission networks studies are the ones which are 

directly connected to this network, or great power loads in 

distribution networks very close to the transmission 

network. This scenery is changing with the growing 

presence of a great number of low power distorting loads 

in the distribution network, and with the presence of 

distorting generators in the same network. 

 

The injection of harmonics and unbalances in the 

transmission networks is so becoming unlocalized, and 

more busses of the transmission network are possible 

sources of harmonic currents. Transmission system 

operators (TSOs) are due to keep theses buses under 

vigilance, in order to monitor the compliance with the 

emission limits for the sake of a good power quality in 

their networks. From this, the necessity of identify the 

network buses in which distorted currents are connected 

is becoming a must for the company.  

 

The optimal solution should be to install measurement 

equipment in all the suspicious buses. But from an 

economic point of view, this is unviable [1]. When a big 

number of buses are measured, technics of state 

estimation can be used to identify harmonic sources [2]. 

However, this is not practical in a real power system. 

Only partial measurements are usually made, and even 

these in buses in which no current source is present. In an 

early paper [3], neural network methods were suggested 

to identify and give value to the harmonic current 

sources. 

 

With this, the normal situation is to obtain an 

underdetermined system. In the case of some TSOs, the 

number of measurement devices is only a small part of 

the number of busses of the network, resulting in a very 

underdetermined system. Besides, in most cases only 

voltage harmonics are measured, with the measurement 

of currents being limited to the point of connection of 

large loads. 

 

In this way, the estimation of harmonic sources in a 

power network must necessarily be made with a limited 

number of measures taken on specific buses and lines of 

the network. Also, measurement errors adds to the 

limitation on the number of measurement, and this makes 

harmonic detection even more problematic. One of the 

first references to the solution of this problem is [2], 

where in imitation of the procedure used in the 
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fundamental state estimation, it is proposed to use a least 

squares technique. In [1], this procedure is systematized.  

 

If it is possible to restrict to certain buses of the network 

the suspicion that are buses where harmonics are 

generated, there is naturally the question of where to place 

the sensors to obtain the best possible detection. To deal 

with this problem, has been proposed variants of this 

technique of least squares [4] [5]. In [6], the problem is 

solved by using a procedure of combinatorial optimization 

which seems computationally expensive for 

implementation in an actual network with a large number 

of nodes. 

 

2. Problem and solution 
The proposed problem is the problem of optimally 

selecting the nodes of a network wherein voltage should be 

measured, in order to estimate in the best possible way the 

harmonic currents injected into certain nodes of the 

network.  Following paragraphs are a mathematical 

formulation of this electric scenery. 

 

The scenery is one in which a network of n  buses is 

considered. In it, a subset of q n   buses are the nodes 

where it is supposed to exist an injection of harmonic 

current (for example, buses in which a non-linear load is 

directly connected, or connected to an industrial load). In 

the rest of the nodes is admitted that the injection of 

harmonic currents is zero.  

 

As is well known, the relationship between nodal voltages 

and currents is of the form V ZI  , where Z  is the sub-

matrix of the impedance matrix of dimension q n  with 

columns corresponding to nodes in which there are 

harmonic current sources. 

If there are p n  harmonic voltage meters installed, it is 

possible to select from Z  and V  the rows corresponding 

to these measured voltages are obtained. With this, a 

system of p equations with q  unknowns is obtained, of 

the form 

  m mZ I V   

If p<q, i.e. there are less meters than suspicious buses, this 

system of equations is indeterminate, admitting multiple 

solutions. 

 

One possible way to estimate the currents injected into the 

nodes is by the solution of minimum norm, which (on the 

assumption that the rank of the matrix mZ matches the 

number of rows p) is given by the expression 

 ' ' 1[ ]est m m m m

I Z Z Z V    

 The general solution can be represented in the form 

 est I I Nh   

where h  is a vector of q p  freely varying parameters 

and N  is a matrix of dimensions ( )q q p   and full rank 

q p  which comply with 

 m Z N O    

Where O is the null matrix of dimensions ( )p q p  . 

Eventually, it is shown in large scale networks that some 

of the rows of matrix N  are all zero elements, which 

means that the corresponding currents are uniquely 

determined by the topology of the network. These rows 

are characterized by the index of the rows of a 

submatrix U  of the identity matrix of order q such that 

 UN O    

Equivalently, can be expressed that those rows are 

determined because they are necessarily linear 

combinations of the rows of the matrix
mZ  .  

A subset of nodes where it is interesting to detect the 

existence of harmonic injections can be chosen. Once 

these nodes have been predetermined, the optimum 

selection of the voltages to measure can be stated as 

finding the rows of the matrix Z  that best approximate 

as a whole the rows of the corresponding matrix U .  

 

Being S  a submatrix of the identity matrix of order n 

which selects p rows of the impedance Z , the best 

approach in Frobenius norm of the matrix U by linear 

combinations of the rows of the SZ  matrix is given by 

the expression 

 1[ ]    
S

U U Z S SZ Z S   

where


S  and 
Z are the transpose and conjugate 

transpose matrices of matrices S  and Z  respectively. 

Ideally the optimum solution involves determining a 

matrix S  that solves the following minimization 

problem: 

 min (trace[ ])

S S
U U    

Obviously this problem has a combinatorial complication 

that makes it intractable. However it is possible to obtain 

a suboptimal solution by extending to the matrix case the 

procedures known as matching pursuit. With then it is 

possible to iteratively determine the subsystem with a 

determined number of vectors extracted of a 

predetermined set of vectors, which comes closest to a 

given vector linearly. In the next paragraphs these 

methods are reviewed and extended. 

 

3. Greedy subset selection algorithms 

Suppose fixed a set  1, , a a  of vectors in 
n

C  that, for 

convenience, we assume have unit norm. Given p n  

and a vector b , the problem is to select p vectors in the 

above set such that the orthogonal projection b  of the 

vector b  on the subspace generated by these vectors give 

the best approximation of this vector, in the sense that the 

euclidean norm  b b  will be minimum. 

 

To determine the optimal solution, we would have to 

check over the 
p

 
 
 

  possible subsets and the 

computation quickly becomes infeasible as the numbers 

  and p  increases. Therefore several suboptimal 

methods of reasonable complexity have been developed. 

In the greedy algorithms, also known as forward 

selection, the subset is sequentially arranged, building 

and incorporating one vector in each iteration. The idea is 

to start by finding the vector ia  closest to b  and then 

add vectors one by one until p  vectors have been 
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selected, adding each time the vector that gives the largest 

decrement of the least squares residual. 

 

The so-called orthogonal matching pursuit is briefly 

described now. The index of the first selected vector is 

obtained as  

 '

1 1argmax i ii   a b   

Having selected the first k  vectors 
1
, ,

ki ia a  the subspace 

linearly generated by these vectors is the range subspace of 

the matrix 

 
1

  
kk i i

 
 A a a   

whose columns are these vectors. The orthogonal 

projection of the vector b  on this subspace is given by 

  
1

k k k k k



b A A A A b   

and the corresponding orthogonal residual is the vector 

kk

  b b b . Having obtained this vector, the index of the 

next vector is given by 

 '

1 argmax 
kk i J i ki 

  a b   

where 
kJ  is the set of indexes of the of the k   

remaining vectors after excluding of the initial set the k  

previously selected vectors. 

 

The above procedure can be extended step by step to the 

subset selection for several vectors. Let these vectors be 

the columns of the matrix 

  1    mB b b   

and as before consider for each subset of p  vectors the 

matrix 

                                 
1

ˆ   ˆ ˆ m 
  B b b    

whose columns are the orthogonal projections of the 

columns of B  on the subspace linearly generated by the 

vectors of this subset. 

Now the problem is to obtain the subset such that the 

Frobenius norm of the matrix difference B B , which is 

given by 

    
2 2

2
trace

F
F F



     B B B B B B B B   

will be minimal. In the k iteration, the matrix 

  
1

:k k k k k



 B B A A A A B   

is obtained and the index of the next vector will be given 

by 

 
'

1 1
argmax

kk i J i ki 

  a B   

 

4. Backward subset selection algorithms 
 

All the forward selection algorithms have a limitation. If a 

vector is selected in one iteration, it remains forever in the 

selected set. Then if, for example, the first vector is 

erroneously selected, it is clear that the correct set of 

vectors cannot be selected. For this reason, sequential 

backward elimination algorithms have been proposed for 

the subset selection problem as an alternative to forward 

selection.  Now the idea is to start with all vectors present 

and remove one vector each time until only p  vector 

remains. 

 

As before, a set  1, , a a  of   vectors in 
n

C  is 

supposed to exist but now, to simplify the exposition, we 

also suppose that they are linearly independent, for which 

n    necessarily. By considering the matrix 

  1   A a a   

the best approximation of the vector b   using all the 

columns of this matrix is given by 

 
1

    b A A A A b   

To describe the first step of the elimination process, let us 

consider the matrices  

  1 1 1 , 1,  ,   k k k k    A a a a a   

Each matrix is obtained by elimination the k  column  in 

A  . For each of these matrices the best approximation is 

given by 

 
1

' '
k k k k k



   b A A A A b   

Clearly for all k  we have 

 0k b b   

Then the column that gives the least of these differences 

is eliminated from the matrix .A   

 

This elimination procedure is reiterated until only p  

vectors remains.  

Obviously the complexity of this algorithm is larger than 

the complexity of the forward algorithm, but frequently 

the subset selected is better than the obtained in that case. 

Using the results obtained in [8], the computational 

burden can be reduced with the following considerations. 

Introducing the matrix 

 
1

   G A A   

let ( , )k k k G  and 
kg  the 1n  vector obtained after 

removing in the k  column of G  the k  component. 

Then it can be proved that by taking the vector 

 k k k k k h A g a   

We have the following relation: 

 
2 2 2

'1
k k k

k
 b b h a   

Hence, to minimize the difference b bk  it is only 

necessary to search for the 

                             
2

'1
argmin  h ah k k

k
   

The initial matrix G  can be efficiently obtained from a 

qr  factorization of the matrix .A  In the remaining steps, 

it is possible to use a recursive formula to reflect the 

removal of columns. If kG  is the matrix resulting from 

the elimination of the k  row and column of matrix G  , 

it can be proved that 

 
1

' '1
k k k k k

kh



    A A G g g   

This forward selection algorithm can be extended to the 

case of subset selection for several vectors in the obvious 

way, with the only difference that in this case we have to 

check the relations 
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2 2 21

k k
F F

k

 B B h A   

to determine the column to be removed. 

 

5. Application to node selection in electrical 

networks 
 

To examine the validity of the proposed algorithm, a 

network of the Spanish TSO REE has been used. Using 

data obtained for a determined demand situation of the 

Spanish power system, the nodes with nominal voltages of 

220 and 400 kV have been selected, together with their 

lines and transformers. With this data, the admittance 

matrix of the network for each harmonic is calculated by 

means of a harmonic power flow program, INTAR, 

commissioned to the Electrical Department of the 

Polytechnic University of Madrid by REE within the 

framework of previous R&D projects. The following 

results have been obtained for a 5th harmonic, but the 

method can be applied to any other harmonic. 

 

The network has n = 846 nodes in total. A superficial 

analysis of the possible loads has allowed to conclude that 

there exists q = 347 nodes where injection of harmonics 

will eventually be presented.  

 
Fig. 1: Distribution of voltage measurement needed to 

exactly estimate a current source. 

 

In a first analysis of the network, for each of these nodes 

the localization of the corresponding minimal subset of the 

nodes where the measure of voltages allows to exactly 

determine the harmonic injection in the node has been 

determined by using the forward greedy algorithm for only 

one vector. The histogram of figure 1 gives the distribution 

of the different number of voltages measures for each 

injection node. 

 

By putting together all the nodes obtained, it is observed 

that there are 590 nodes in which the measure of voltage is 

needed to exactly determine the possible injection of 

harmonics in all the 347 suspect nodes. It is obvious that 

the installation of such a number of equipment is not an 

option. 

  

In a second analysis, a subset of 40 nodes of higher interest 

has been selected among the 347 suspect nodes. To 

determine the suboptimal selection of nodes to place the 

voltage sensors to characterize these nodes, a mixed 

forward-backward subset selection algorithm have been 

employed. First an exhaustive greedy forward search is 

implemented to obtain a set of nodes where the measure 

of voltage exactly determines the harmonic injection in 

the selected nodes. Then a backward iterative process is 

initiated, where nodes to be removed are selected one by 

one, trying to minimize in each step the least squares 

errors increments in the numerical solutions, until the 

specified numbers of voltage sensors is obtained. 

 

 
Figure 2: Errors in the determination of harmonic current 

injection (50 voltage measurements). 

 

 
Figure 3: Errors in the determination of harmonic current 

injection (100 voltage measurements). 

 

This algorithm has been implemented in a MATLAB 

program. Numerical simulations were performed with 

this program by assuming 40 nodes of interest which are 

located in randomly chosen nodes selected from the 347 

potential sources. 

 

The 5th harmonic injections are done in the 347 potential 

sources, with random modules of a mean value of 0.2 p.u. 

and a variation of 0.5, with the phases selected randomly. 

In Fig. 2, a typical result is shown. The 5th harmonic 

current sources are shown. Also, the differences in 

absolute values of the obtained modules in p.u. of the 

estimated harmonic sources with the actual values are 

represented. In the first case, 50 voltage sensors sub-

optimally and randomly selected are used. If 100 voltage 

sensors are used, the results improve, as shown in Fig. 3.  
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Figure 4: Histograms of the results for a 10000 executions 

of the algorithm with 50 measures. 

 
Figure 5: Histograms of the results for a 10000 executions 

of the algorithm with 100 measures. 

 

In Fig. 4 and Fig. 5, the results of a big number of 

executions with random sources in fixed buses, with the 

measurements in a fixed set of random buses, and in a 

fixed set of sub-optimal buses are shown. The global errors 

in the estimated harmonic injection in the 40 buses have 

been represented, for a set of 50 and 100 voltage 

measurement devices. They are expressed as the addition 

of the absolute difference between estimated and actual 

values in the 40 buses. 

 

3. Conclusion 
 

A variation of the problem of obtaining the best location of 

sensors to improve the location of harmonic voltage 

measurement devices is shown. An extension to matrix 

cases of standard greedy forward-backward algorithms for 

subset basis selection is presented. It can be applied to real 

networks, and results for an actual transmission grid are 

presented. 

Even when the necessity of a substantial number of 

measurement systems cannot be avoid, a sub-optimal 

selection of the buses to install can reduce the number of 

devices required. 
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