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Abstract. Complex disturbance patterns take place over the 
corresponding power supply networks due to the increased 
complexity of electrical loads at industrial plants. Such complex 
patterns are the result of a combination of simpler standardized 
disturbances. However, their detection and identification represent 
a challenge to current power quality monitoring systems. The 
detection of disturbances and their identification would allow early 
and effective decision-making processes towards optimal power 
grid controls or maintenance and security operations of the grid. In 
this regard, this paper presents an evaluation of the four main 
techniques for novelty detection: k-Nearest Neighbor, Gaussian 
Mixture Models, One-Class Support Vector Machine, and Stacked 
Autoencoder. A set of synthetic signals have been considered to 
evaluate the performance and suitability of each technique as an 
anomaly detector applied to power quality disturbances. A set of 
statistical features have been considered to characterize the power 
line. The evaluation of the techniques is carried out throughout 
different scenarios considering combined and single disturbances. 
The obtained results show the complementary performance of the 
considered techniques in front of different scenarios due to their 
differences in the knowledge modelization. 
 

Keywords. Condition monitoring, fault detection, 
novelty detection, power quality, power quality 
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1. Introduction 

 
Power quality has been critical since the massive 
introduction of non-linear loads to the power grid, such as 
protection systems, digital-based equipment, and industrial 
processers in general. Power Quality (PQ) has become one 
of the most important issues for both utilities and consumers 
since it plays a vital role in the proper operation of electrical 
power systems [1]. Typically, PQ problems are much severe 
at the utilization level and in the industrial sector. 
Significant research and development around power quality 
monitoring schemes are based on fault detection and 
identification methodologies. Thus, a great effort has been 
carried out towards high-performance disturbance 
characterization procedures [2]. Among the most important 
power quality standards, the IEEE 1159 [3] represents the 
most comprehensive reference in which the limits of 
distortions for different levels of the power system are 
defined. This standard considers the quantitative definition 
of basic power quality disturbances. However, unlike the 

ones caused by the simple combination, complex 
disturbance patterns are not defined in such international 
standards. In this regard, the appearance of disturbances 
does not always correspond to predefined patterns. In this 
sense, novelty detection represents a current field of 
investigation applied in multiple machine learning-based 
applications. Novelty detection refers to identifying 
abnormal system behavior over which a data-based model 
of normality has been constructed. Such deviations from 
the reference patterns are identified as "novelty". The 
detection of novel patterns during the on-line operation of 
the corresponding fault detection and identification 
systems is being considered an essential function for the 
next generation of monitoring schemes applied to 
industrial maintenance and supervision. Although a great 
deal of novelty detection research is available in fields of 
application like electrical motors or power converters, its 
application to power quality monitoring schemes has not 
been clearly explored yet. Most of the few available works 
dealing with novelty detection and PQ are limited to the 
detection of stationary changes in voltage and current 
signals under monitoring [4]. The work presented in [5] 
brings the concept of novelty detection slightly different 
from the classical. This study segment the signal in fixed 
length frames and compares it with a reference one. If a 
frame surpasses the metric considered as a threshold in the 
reference frame is a novelty. In [6], an approach for the 
automatic classification of voltage waveforms is 
presented. This work classifies the novelties as waveforms 
not available during the training stage, and its 
classification method is based on support vector data 
description.  Although these works represent upcoming 
approaches to the field, they do not consider non-
standardized disturbances. Also, neither discuss the 
suitability of different available novelty detection 
techniques, limiting their applicability in current industrial 
scenarios. 
 
Thus, the contributions of this work include the 
consideration of a novelty detection framework applied to 
power quality monitoring. The proposed scheme 
comprises four of the most accepted machine learning 
techniques applied to novelty detection for their 
comparison: k-Nearest Neighbor (kNN), One-Class 
Support Vector Machine (OC-SVM), Gaussian Mixture 
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Model (GMM), and Stacked Auto-Encoder (SAE). The 
monitoring scheme includes the characterization of the 
current line through statistical features in the time domain 
and frequency domain. The performances of the considered 
techniques are analyzed in front of scenarios of single and 
combined disturbances. Thus, the analysis is carried out 
quantitatively through the discussion of the resulting 
accuracies. 

 
2. Novelty detection techniques 

 
Four novelty detection techniques are considered in this 
work. The following is a brief and concise explanation of 
the techniques according to [7]:  

 
 k-Nearest Neighbours 
The main concept rear this technique is that normal data will 
be projected near the available neighborhoods, while 
novelties will be projected far from that neighbors. The k 
stands for the number of neighboring points to be 
considered when evaluating a new datum. Thus, 
considering assessing a given data sample x, this point will 
be accepted as normal if the distance to its nearest neighbor 
y, dxy, is equal to or less than the distance from y to its 
nearest neighbor in the training set. Otherwise, x will be 
considered a novelty. Euclidean distance (1) is the most 
popular choice for univariate and multivariate continuous 
attributes. 

 

‖𝑥 − 𝑦‖ = ඩ(𝑥 − 𝑦)ଶ



ୀଵ

 (1) 

 One-Class Support Vector Machines 
OC-SVM aims to separate one class of target samples from 
the rest leading to a one-class characterization problem. 
Thus, one class is appropriately characterized, that is, the 
one including all available knowledge, while the rest of 
behaviors are considered novelties due to measurements are 
not available. This method finds an optimal hyperplane 
separating the known class of training data set in a high-
dimensional feature space, and so, the test data can be 
classified [8]. The optimal separating hyperplane can be 
determined by solving the following constrained 
optimization problem: 
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Subject to 
 

𝑤 ∙ 𝛷(𝑥) ≥ 𝜌 − 𝜉  𝜉 ≥ 0 (3) 

where 𝒗 is a penalty factor and 𝝃𝒊 is the slack variable for 
the point 𝒙𝒊, where 𝒙𝒊 , 𝒊 = 𝟏, … , 𝑵 denotes training 
samples. The constants 𝒘 and 𝝆 are the normal vector and 
offset of the hyperplane, respectively. Despite OC-SVM 
being a linear function set, it is possible to solve non-linear 
classification problems using a kernel function. A binary 
classification indicates the side of the boundary in which the 
sample encounters states' novelty patterns. 
 
 
 

 Gaussian Mixture Model 
A GMM is a parametric probability density function 
represented as a weighted sum of Gaussian component 
densities. GMM parameters are estimated from training 
data using the iterative Expectation-Maximization (EM) 
algorithm or the Maximum a Posteriori (MaP) estimation 
from a well-trained prior model. Its application over a 
given data sample x results in an estimation of its 
membership probability, which can be considered for 
novelty detection thresholding. A Gaussian mixture model 
is a weighted sum of M component Gaussian densities 
given by equation (4).  
 

𝑝(𝑥 | 𝜆) =  𝑤

ெ

ୀଵ

𝑔(𝑥 | 𝜇, Σ) (4) 

where 𝒙 is a D-dimensional continuous-valued data 
vector, 𝒘𝒊 are the mixture weights, and  𝒈(𝒙 | 𝝁𝒊, 𝚺𝒊) are 
the component Gaussian densities. 
 
 Stacked Autoencoder 
The SAE is a neural network-based structure trained to 
replicate its input at its output after encoding and decoding 
stages. The basic autoencoder structure consists of two 
main components: an encoder and a decoder. The encoder 
contains the input layer and a hidden layer, which is used 
to represent the previous layer in a reduced dimension. 
Otherwise, the decoder takes the compressed information 
resulting from this hidden layer and returns it to the 
original dimension through an output layer. The stacking 
of different autoencoders is usually considered to reduce 
or compress the input data through several steps, passing 
from a high dimensionality to a low dimensionality 
without losing characteristic information relevant to 
reconstruct the original signal at the output of the structure. 
An example of a stacked autoencoder is shown in Fig. 1. 
The hidden layer with the smallest size represents the 
reduced set of information resulting from the feature 
reduction process. It is considered to be used for posterior 
detection and classification of faulty patterns. 

 
Fig. 1. An example of a stacked autoencoder composed of two 
autoencoders. 
 
The training process is unsupervised and based on a cost 
function minimization. This cost function measures the 
error between the input and its corresponding 
reconstruction at the output. Thus, reconstruction errors 
higher than those obtained during the training process 
indicate novel patterns. Adding penalties to the cost 
function, an autoencoder could include sparsity of the 
representation, smallness into the derivative of the 
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representation, and robustness to noise or missing inputs. 
These coefficients are the L2W regularization term, the 
sparsity regularization term, and the sparsity proportion 
term. Thus, the cost function, 𝑱(𝒙), related to a regularized 
autoencoder is presented in (5). 

 𝐽(௫) = 𝐿(𝑥, 𝑥ො) +  𝜆 ∗ Ω௪௧௦ + 𝛽 ∗ Ω௦௦௧௬ (5) 

where 𝐿(𝑥, 𝑥ො) is a loss function (e.g., Mean Squared Error, 
MSE), that measures the error between the input 𝑥 and the 
reconstruction 𝑥ො. 𝜆 is the coefficient for the L2W 
regularization term  Ω௪௧௦, and 𝛽 is the coefficient for the 
sparsity regularization term Ω௦௦௧௬  [9]. Thus, such 𝐽(௫) 

cost function is approached as an optimization problem 
during the autoencoder training process. 
 
3. Experimental methodology 

 
The proposed methodology applied to PQ disturbances 
novelty detection is composed of three different stages, as 
shown in Fig. 2. Thus, in the first stage, a complete database 
of synthetic signals is generated. The synthetic database has 
been designed following the corresponding definitions of 
disturbances established by the IEEE Std 1159, leading to 
the normal signal of operation and different single and 
combined disturbance conditions. A meaningful set of 16 
statistical time and frequency domain features are estimated 
to characterize all synthetic signals in the second stage. 
These numerical features are extracted from the related 
literature and represent a significant characterization 
process of the signals. Finally, the third stage corresponds 
to the training of the four novelty detection methods 
considered for their assessment. Each of the considered 
novelty detection techniques has distinct parameters that 
need to be determined. Such parameter selection has been 
carried out following the corresponding procedures 
available in the related literature. 
 

 
Fig. 2. Scheme for novelty detection techniques evaluation in PQ 
disturbances. 
 
A complete set of test data, including known disturbances 
(i.e., single disturbances scenarios), and unknown 
disturbances (i.e., combined disturbances scenarios), is 
considered. The performance for each of the four techniques 
is quantitatively analyzed in front of multiple novelty 
detection scenarios. 

 
A. Database synthetic signals and disturbances scenarios 
Various challenging scenarios of PQ disturbances are 
considered to validate the proposed methodology, including 
multiple classes and combinatorial patterns considering 
single disturbances. It should be noted that most of the 
studies related to PQ monitoring deal with single 
disturbances. However, just a few of them consider PQ 
scenarios, including the combination of two disturbances, 
which represent a challenging and required framework. 
Thus, the complete set of conditions or classes considered 

are: C1: Normal; C2: Sag; C3: Swell; C4: Interruption; 
C5: Flicker; C6: Harmonics; C7: Oscillatory Transient; 
C8:Sag with Harmonics; C9: Sag with Oscillatory 
Transient; C10: Swell with Harmonics; C11: Harmonics 
with Oscillatory Transient; C12: Harmonics with Flicker. 
 
A set of 1000 signals for each class is generated to face the 
training stage properly for the four techniques. The 
common parameters of the signals are 60 Hz for his 
fundamental frequency and amplitude in per unit (pu). The 
signals generation and the posterior procedure of 
evaluating the techniques have been carried out in Matlab 
2020b. Specifically, according to the models developed by 
parametric equations, the signals have been obtained 
considering all distinct representations in severity for each 
class. The signals are created with a window time of 
0.1666 ms, equivalent to ten cycles of the signal. This 
window size is chosen because the voltage is usually 
measured on a cycle-by-cycle basis, according to [3]. The 
sampling frequency is 15.36 kHz. Fig. 3 depicts some of 
the resulting disturbances considered. 
 

  

  
Fig. 3. Electrical signals synthetically generated. a) Normal. b) 
Swell. c) Swell with Harmonics. d) Harmonics with Oscillatory 
Transient. 
 
Once the numerical feature database is generated, a 
training set and test set are defined. The training set 
includes 90% of the known samples, and the test set the 
remaining 10% in addition to the same number of novelty 
condition samples. A 10-fold-cross validation approach is 
taken into account throughout the training process.  
 
In this sense, three scenarios are defined in order to test 
each one of the four techniques. Table I depicts the 
scenarios with the classes considered as known and 
novelty for the test. For the three scenarios, two classes are 
considered novelties. In this regard, for each test, only one 
class is tested, so for each one of the three scenarios, two 
different tests -one for each class unknown- have been 
performed. 
 
Table I – Scenarios selected and the classes considered in each 

one as known and novelties. 

Scenario Know Classes 
Novelties 

Test 1 Test 2 
1 C1, C2, C3, C4, C6, C7 C5 C8 

2 
C1, C2, C3, C4, C5, C6, 

C7, C8 
C9 C11 

3 
C1, C2, C3, C4, C5, C6, 

C7,, C8, C9, C11 
C10 C12 
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B. Feature extraction calculation 
The signals have been characterized in the time domain and 
frequency domain for the database, calculating eight 
statistical indicators for each one of these domains. FFT is 
calculated for the frequency domain. As a result, a feature 
characterization array of 16 statistical indicators is obtained 
in this stage. Table II depicts the equations for the statistical 
indicators considered. 
 

Table II – Set of statistical features 

Mean �̅� =
1

𝑛
∙  |𝑥|



ୀଵ
 (6)  

 

Deviation 
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Variance 𝜎ଶ =
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Skewness 𝑆 =
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C. Configuration of techniques' hyperparameters 
A proper configuration of each technique is needed in order 
to reach a significant level of performance. In this regard, 
for each technique, its configuration has been based on an 
empirical approach following related literature. Next, for 
each technique considered, a description of its key 
hyperparameters -and their configuration- is presented. 
 
 k-Nearest Neighbours 
The parameter k of the kNN method is a specific parameter 
defined by the user. Often k is set to a natural number closer 
to the square of training samples [10]. Low values for k like 
1 or 2 can be noisy and subject to the effects of outliers. 
Large values for k smooth over things. k should not be so 
large that other categories will always outvote a category 
with only a few samples in it. Nonetheless, not always 
increasing the value of k makes the prediction accurate [11]. 
 
In this work, the value of k is settled in a value of 3, resulting 
in the best performance. The values that have been tested 
are 3,5,10,20, and 30. One established the value of k, the 
threshold for novelty detection with kNN has been defined. 
With the average Euclidean distance of the k nearest 
neighbors in the training data, the knowledge data, a 
histogram with the adequate resolution, is created, and a 
95th percentile is selected. So, the calculated distance of test 
samples over this threshold is considered a novelty. 

 One-Class Support Vector Machine 
In OC-SVM, the penalty factor 𝒗 is settled in 0.01. This 
parameter leads to a less o more number of support vectors 
and established the decision boundary. An optimal value 
of this parameter should capture the data complexity either 
to avoid overfitting. The larger the penalty factor, the more 
overfitted the hyperplane. The smaller the penalty factor, 
the more adapted the hyperplane.  In general, a value that 
detects 90-95 % of the available data is correct. The 
novelty metric is binary, on one side or the other of the 
hyperplane. 
 
 Gaussian Mixture Models 
To select the number of components of the GMM, a range 
of component numbers is evaluated. Then, using the 
Bayesian information criteria (BIC), the GMM with the 
number of components resulting in the lowest BIC is 
selected. The range of the number of components is 
between the number of classes known and 1.5 times that 
number. The threshold is selected as a 95th percentile of 
the distribution from the sample distance to each mean of 
each component in the GMM. 
 
 Stacked Autoencoder 
One of the main difficulties when considering an SAE is 
related to the design of its structure, that is, selecting 
optimal values for each configuration parameter. Indeed, 
the SAE requires the definition of specific 
hyperparameters that must be selected to obtain a proper 
performance. These hyperparameters include: (i) the 
hidden layers size, (ii) the L2W regularization, and (iii) the 
sparsity regularization. For the hidden size of the layers, a 
deep network is proposed based on reducing the features. 
In this approach to obtain the maximum optimal 
representation in each hidden layer, three encoder layers 
are considered. The reduction ratio is between one-third 
and one-tenth regarding the number of features as input 
considered [12]. In this approach, the values selected are 
one-eighth for the first layer concerning the input size and 
then one quarter for the following two layers. That means 
that the final representation is of size three eighth from the 
input size. This reduction ratio is selected according to 
[13] that indicates that a fewer hidden size can lead to a 
poor generalization ability of the SAE. Also, too many 
hidden layers cause invalid representations to be extracted. 
An empirical procedure based on a coarse grid search has 
been considered regarding the regularization terms in the 
cost function. The values result for the hyperparameters 
selection are summarized in Table III. 
 

Table III - Hyperparameters values for the autoencoder 
configuration 

Hyperparameter Value Selected 

Number of Autoencoder 3 

Hidden layers size 

Layer Size 

1 14 

2 10 

3 6 

L2W Regularization 0.000001 

Sparsity Regularization 0.0001 
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A histogram with the MSE of all training samples is 
performed and based on the Cumulative Distribution 
Function to select the threshold to define a novelty. A 90% 
percentile value is defined as a threshold, so the MSE 
obtained test samples higher than the threshold is 
considered a novelty. 
 
4. Results and discussion 

 
The results that are presented next include the analysis of 
the techniques' performance in front of the different 
scenarios of known and unknown disturbances. The 
performance of the considered techniques in front of the 
tests presents significant variations depending on the 
configuration parameters and complexity of the novelty 
detection scenario. In this regard, the resulting novelty 
detection accuracy for the confusion matrix in each of the 
considered tests and techniques is summarized in Table IV. 

 
Table IV – Accuracy of each technique as novelty detector 

 
Scenario #1 Scenario #2 Scenario #3 

Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 

KNN 84.72% 91.14% 87.14% 88.74% 89.7% 86.36% 

GMM 84.78% 83.38% 83.92% 83.26% 83.72% 82.96% 

OC-
SVM 

89.14% 90.04% 88.44% 88.06% 90.28% 87.6% 

SAE 78.88% 85.18% 81.68% 81.9% 85.3% 82.6% 

 
The accuracy results depict that in scenario 1, test 1 is more 
complicated to describe the pattern distribution, and only 
the OC-SVM is near to reach 90%. Exclusively in test 1, the 
novelty class is a simple disturbance, so the characterization 
with the statistical indicators considered is not sufficient to 
assign the proper class to the test samples. All other 
techniques achieve a performance of less than 85 %. In test 
2, kNN presents the best performance. In scenario 2, kNN 
and OC-SVM are maintained as the best techniques. 
However, GMM maintains a lower level of performance as 
in scenario 1. In scenario 3 the same trend is maintained 
similar to scenario 2, with only slightly increased SAE 
performance. Again GMM presents the lowest accuracy. 
The results of each technique related to know and novelty 
classes are presented next. A more descriptive performance 
is depicted through Table V to Table VIII.  
 

Table V - Detail of kNN performance 
 Scenario #1 Scenario #2 Scenario #3 
 K N K N K N 

Test 1 91.2% 45.8% 91.6% 51.4% 91.08% 75.8% 

Test 2 91.08% 91.4% 91.58% 66% 91.04% 39.4% 

K-Known set; N-Novelty set 
 

In the kNN technique, the three scenarios for the known 
classes present a good performance of around 91%. 
However, detecting novelties is lower than 80% in almost 
all the scenarios and tests.  
 
 
 

Table VI - Detail of GMM performance 
 Scenario #1 Scenario #2 Scenario #3 
 K N K N K N 

Test 1 92.1% 40.8% 90.86% 28.4% 88.32% 37.6% 

Test 2 90.34% 41.6% 90.52% 25.2% 88.98% 22.2% 

K-Known set; N-Novelty set 
 

In the GMM technique, the performance for the known 
classes is around 90% decreasing 2% through more 
complicated data distribution as in scenario 3. The local 
performance related to detecting novelty patterns is under 
40%, decreasing in half when more data is added to the 
scenario. 

 
Table VII - Detail of OC-SVM performance  

 Scenario #1 Scenario #2 Scenario #3 
 K N K N K N 

Test 1 89.34% 88% 88.1% 91.2% 89.88% 94.2% 

Test 2 88.52% 99.2% 87.54% 92.4% 90.38% 59.6% 

K-Known set; N-Novelty set 
 

The OC-SVM shows an equilibrated performance. The 
performance to detect novelties is slightly more 
outstanding on some occasions, almost reaching 100% on 
one occasion. Nevertheless, the lowest performance is 
near to 60% related to detect novelties.  

 
Table VIII- Detail of SAE performance  

 Scenario #1 Scenario #2 Scenario #3 
 K N K N K N 

Test 1 90.28% 10.4% 89.64% 18% 90.4% 34.4% 

Test 2 89.34% 60.2% 90.08% 16.6% 89.98% 9% 

K-Known set; N-Novelty set 
 
The SAE is a technique where unexpected values have 
been obtained. In this sense, the known class performance 
is suitable on an average of 90%  in all scenarios and 
number tests. However, the most high performance in 
novelty patterns is 60%, and on some occasions, lower 
than 10% is observed. In Fig. 4, a signal from the known 
class and a signal for the novelty class are depicted to show 
the work made by the SAE encoding and decoding the 
information. 

 
Fig. 4. Input feature vector and its reconstruction by the SAE. a) 
Known class sample. b) Novelty class sample. 
 
To summarize, Fig. 5 shows the average performance 
obtained for each technique through the three scenarios 
and the two tests in each one. In this figure is depicted the 
performance for known classes and novelties. It must be 
noted that the four techniques are suitable to identify the 
known class, but in novelties, OC-SVM is superior to the 
others. This superior yield could be because selecting a 
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hyperplane adjusts the data patterns or distribution better, 
leading to a better separation of the classes. The four 
techniques have a global performance of around 90%, 
although it is due to the excellent performance obtained in 
identified known classes. 
 

 
Fig. 5. Overall performance of the four techniques as novelty 
detectors. 
 
In this sense, suppose that different classes' configurations 
adding to the complex knowledge model could bring 
different performances. Also, the considerations of an 
exhaustive grid search or stochastic search or algorithm to 
looking for the best hyperparameters of each technique 
could considerably increase the four techniques' global 
performance. 
 
5. Conclusion 
 
A novelty framework of four techniques is presented and 
evaluated in various PQ disturbances scenarios as novelty 
detectors in this work. There are three important aspects in 
this work. First, the consideration of novelty detection in the 
PQ area. Although a few works present Novelty Detection 
in PQ, the increase of the loads attached at the grid leads to 
complex patterns, and detecting them is a current challenge 
to improve condition monitoring power systems. Second, 
the consideration of different scenarios with simples 
standardized and combined disturbances patterns. However, 
combined disturbances are not described or defined, and 
reported them is a need that must face it. Third, the four 
techniques evaluated are among the most typical in the 
Novelty Detection area, so considering these techniques 
involves the different approaches, based in domain, based 
on distance, based on probabilistic and new trend like deep 
learning approaches. With the evaluation, advantages, and 
disadvantages of each of the techniques exposed, the 
performance results bring an interesting perspective. It 
showed that some techniques work excellently in detecting 
novelty patterns, even not present a good performance in the 
known classes. Also, the configuration of parameters in 
each technique plays a vital role in achieving a suitable 
performance. The results achieved for the techniques could 
be misinterpreted if the global performance is observed. For 
this reason, detail of performances in detecting the classes 
known and novelties are depicted and discussed, resulting 
in some techniques best detecting the known classes. In this 
sense, a hybrid scheme could provide the potential of 
detecting adequately known and novelty patterns. Also, the 
next step in this research is to find a qualitative way to show 
the approximation of the novelty detection techniques 
presented to visualize in 2-Dimensional the representation 

achieve for each technique without losing information due 
to the compression technique considered. 
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