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Abstract. Brushless doubly fed machine (BDFM) is a 
potential for future wind energy generation, due to its lower 
maintenance costs and higher reliability than conventional 
doubly fed systems. While efficiency and design optimization 
of the machine has become critical issues recently, no analytical 
core loss model is investigated in the literature. Furthermore, 
core loss modeling is different from conventional induction 
machines, because of double frequency excitation of the 
machine. In this paper, a dynamical system is used for modeling 
of hysteretic behavior of iron core, and hysteresis losses of 
BDFM are analyzed and modeled mathematically. The flux 
waveforms of BDFM are assumed pure double sine, as in 
wound rotor BDFM lower harmonic values than nested loop 
design exist. 
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1. Introduction 
 
In standard frequencies (50 or 60 Hz), core losses are 
around 20-25 percent of losses in electrical machines [1]. 
In BDFM, the amount of core loss is increased due to 
poor magnetic design [2]. Since this machine has two 
supply frequencies (power and control windings), 
definition of operating point is fairly different with single 
fed machines, so there are more different parameters for 
designing the machine. Until now, there is no 
contribution on mathematical calculation of losses in 
BDFM to be used in optimization of machine design or 
operating point, except the simulation of the machine by 
Ferreira et al [3], using 2D finite element method. In the 
simulation, the nonlinearity and saturation effects of iron 
core are taken into account. To calculate core losses, 
hysteresis and eddy current losses are considered, but 
hysteresis loss is calculated using classic models of 
conventional singly fed machines, where single 
sinusoidal supply exists. However, this is not compatible 
with flux distribution of a BDFM.  
 
Core losses are generally divided into hysteresis, classic 
eddy, and excess eddy current losses. For each of them, 
there are certain dynamic and mathematic relations. In 
this paper, hysteresis loss of a BDFM is investigated. To 
do this, core flux is assumed 2D, to simplify flux 
calculation. 
 
 
 
 

2. Hysteresis Losses 
    
There are three main ideas for modeling the hysteresis 
systems. First method is fundamental analysis based on 
physical principles of the system, resulting in a large 
dynamic system [4], [5]. Although the method is the most 
accurate model, modeling comprehensive internal 
mechanisms of the system is mandatory, so it is 
complicated. Even, if the accurate model of the system is 
obtained, it should be simplified for computer 
simulations. 
  
The second approach utilizes static models extracted 
from interpolation of experimental data. This method is 
generally used for sinusoidal supply systems and is 
widely used in electrical engineering systems. The main 
goal of these methods is to calculate energy losses in 
hysteretic systems. In fact, these models cannot simulate 
the hysteresis loops, and only contribute an estimate for 
the surface of the hysteresis loop. The waveforms studied 
in these models, are quasi-sine waves with little 
distortion from fundamental harmonic, separating the 
hysteresis loop into major and minor loops. These 
methods are based on estimation of surface of major and 
minor loops, as a function of waveform peak values. The 
most familiar nonlinear model is found in [6], 
introducing area of the hysteresis loop as an algebraic 
function of the peak flux density. The exponent is a 
constant number, which varies by the material. There are 
more accurate exponential models, which have the term 
of peak of flux density in their exponents [7]. In some of 
these models, exponent is a linear function of magnetic 
flux density [8], and in some others, quadratic function is 
preferred [9]. These models are mainly applied to single 
sinusoidally excited cores and the constants are 
calculated by curve fitting approach. 
 
The third approach combines the two ideas to obtain a 
macroscopic view of hysteresis dynamics. This 
mathematical modeling approach can be verified by 
analogy of experimental and theoretical properties of the 
system. Since the hysteresis phenomenon is nonlinear, 
the model should be nonlinear either. If the model was 
linear, the accuracy of the model could be evaluated by a 
single experiment, according to Representation Theorem 
[10]. For experimental evaluation of the nonlinear model, 
infinite experiments are required, and the system cannot 
be evaluated by a single experiment anymore [11]. So, 
the model is evaluated qualitatively, by means of 
assessment of the main characteristics of the real system 
and the model. Then the model parameters and functions 
can be determined by experimental data. According to 
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the analogy of the qualitative properties of both systems, 
it is expected that behaviour of the system in various 
excitations be accurate. The assumption is investigated 
by many different experiments in practice. Volterra 
proposed an integro-differential equation as the first step 
in developing the model [12]. Unfortunately, his model 
did not introduce a proper method for derivation of the 
kernel of the equation. To solve this problem, Block [13] 
and De Figueiredo [14] presented a Function Space 
method and employed piecewise-linear techniques. After 
them, Resh presented a model based on the similarities of 
the hysteresis phenomenon and a specific mechanical 
system, however, the model was very complicated [15]. 
 
The model of this paper is based on the Volterra’s 
equation, but in contrast to it, an applicable approach for 
extraction of functions and model parameters is 
appended. A key advantage of this model is its overall 
simplicity, which is a valuable benefit in modelling of 
large systems. 
 
Although the second modelling method is very typical in 
electrical engineering systems, it is not appropriate for 
modelling hysteretic dynamics of fields in a BDFM. First 
reason is the labyrinth of minor loops which their area 
cannot be calculated independently. Furthermore, in 
some situations, hysteresis loops are not symmetric, so 
the positive and negative peaks are not equal. In 
accordance with these reasons, using the third method is 
preferred. 
  
3. Hysteresis Loss Mathematical Model 
 
In [11], a dynamical system is proposed to model 
hysteretic relationship of the variables x and y: 

                 
( ) [ ( ) ( ( ))] (1)dy t g x t f y t

dt
= −  

where, f and g are strictly monotonically increasing, and 
differentiable functions, with nonzero slopes throughout 
the entire real line, and (0) (0) 0g f= = . 
It can be shown that the function g corresponds with 
magnetic losses, while the function f represents for the 
energy storage mechanism. Hence the g and f functions 
are called as “dissipation function” and “restoring 
function” respectively. Functions f and g can be 
determined to simulate a real system, using simple 
geometric calculations on a couple of system waveforms 
x(t) and y(t). It can be shown that, increasing the supply 
frequency will increase the area of the hysteresis loop. 
This phenomenon is called “widening effect”. The model 
can simulate minor loops properly. 
 
4. Determination of dissipation and 

restoring functions 
  
As discussed above, the presented dynamic model has the 
majority of important characteristics of the real hysteresis 
systems, so the system parameters can be defined based 
on a certain hysteresis loop, that the model can simulate 
the real system in other situations. Now we should 
present a method to define “dissipation function” and 

“restoring function”. To do so, we should first measure 
the {x(t), y(t)}. The supply waveforms can be chosen 
arbitrarily. The simplest waveform to excite the system is 
a cosine excitation for y(t). Therefore, y(t) is an even 
function and y′(t) is odd. Each x(t) waveform can be split 
into an even and an odd component as below: 

                     ( ) ( ) ( ) (2)e ox t x t x t= +   

If the system can be assumed symmetrical, in other 
words, f and g are odd; combining (1) and (2) we have: 

                
1( ) ( ( )), ( ) ( '( )) (3)e ox t f y t x t g y t−= =  

Since y(t) is sinusoidal, there exist two instants of time 
that: 

                1 2 1 2( ) ( ) , [0, ] (4)y t y t t t T= ∈  
and 

                      1 2'( ) '( ) (5)y t y t= −  

Considering the g is odd, we have: 

              
1 1

1 2( '( )) ( '( )) (6)g y t g y t d− −= − =  

With substituting (6) in (3), we will have: 

                    1 2( ) ( ) (7)e ox t x t d= − =  

Since {x(t1),y(t1)} and {x(t2),y(t2)} are two points with the 
same value on the y axis we can write: 

         
1 2

1 2
( ) ( )( ) ( ) (8)

2e o
x t x tx t x t d−

= − = =  

It can be seen in Fig. 1 that d is the distance between the 
edges and the median of the hysteresis loop. Furthermore, 
it is concluded from the (3) that the median of the 
hysteresis loop satisfies the below equation: 

 ( ) ( )1 1
1 2 1 2( ) ( ) ( ) ( ) (9)e ey t y t f x t f x t− −= = =   

So the median demonstrates the f function. Considering 
that y(t) is cosine, from the point y(t)=0 to the point 
where the y(t) becomes maximum, y(t) will be strictly 
decreasing. For the g-1 function, this means that with an 
increase of y(t), the hysteresis loop is narrowing. The 
details of the determination process of the f and g 
functions are shown in Fig. 1. It is worth noting that f and 
g are unique functions. 
 

 
Fig. 1 defining the f and g functions 
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If the hysteresis loops and the waveforms were not 
symmetric, we can use other methods such as numerical 
optimization to extract the functions.  
 
5. Accuracy of the dynamic model 
 
A sample of simulation of the model is portrayed in Fig. 
2 and accuracy of the model in estimating the 
complicated loops is verified [11]. 

 
Fig. 2 hysteresis loops (a) experimental (b) simulation 

 
Fig. 2 (a) shows the experimental hysteresis loop and the 
Fig. 2 (b) shows the simulation result of the hysteresis 
loop by the model [11]. We can see that the model has 
simulated the real system accurately. 
 
6. Hysteresis Loops in a BDFM and 

Corresponding Losses 
 
In a BDFM, rotor and stator field variations should be 
taken into account. In synchronous operation of the 
BDFM, the rotor field has a single frequency 
(synchronous frequency ߱௦). The stator field, consists of 
two fields, power winding and the control winding, with 
the frequencies of ߱ଵ and ߱ଶ, respectively. In [16] the 
magnetic field of a BDFM in the air gap is stated as: 

  1 1 1 2 2 2( ) ( ) ( ) (10)B B Cos t p B Cos t pθ ω θ ω θ γ= − + − +  
transformation of the above equation to rotor’s reference 
results in: 

                         (11)rtθ ω ϕ= +  

  1 1 2 2( ) ( ) ( ) (12)r s sB B Cos t p B Cos t pϕ ω ϕ ω ϕ γ= + + + +  
Due to different field waveforms, stator and rotor have 
different amount of losses. In each ߠߜ section of the 
machine, magnetic field of machine can be calculated. So 
to calculate the whole losses, amount of loss is calculated 
with respect to ߠ, then integrated on interval [0,2π]. This 
is equivalent to calculating the average losses with 
respect to ߠ, then multiplying the result with 2π. This 
procedure is used in the numerical calculation algorithm. 
Another important point is that the machine losses are 
independent of phase difference of the fields, if the slip 
speed is not zero. The evidence of the assert is that with 
proper time and angle shifts of the magnetic field, the 
field distribution, corresponding to ߛ ൌ ߛ ଵ andߛ ൌ  ,ଶߛ
are the same. Since calculation the losses is performed by 

averaging on time and angle, time and angle shifts do not 
change the final result. 
Lemma 1: the machine losses are independent of phase 
difference of the fields, if the slip speed is unequal to 
zero. 
Proof. If two fields with different phase values are 
assumed, the time and angle shifts are performed to fit 
them over each other: 

1 1 1 2 2 2 1( , ) ( ) ( ) (13)IB t B Cos t p B Cos t pθ ω θ ω θ γ= − + − +

1 1 1 2 2 2 2( , ) ( ) ( ) (14)IIB t B Cos t p B Cos t pθ ω θ ω θ γ= − + − +

                          0 (15)t tτ = +  
                          0 (16)η θ θ= +   
By substituting (15) and (16) in (14) we will have: 

          
1 1 1 0 1 1 0

2 2 2 0 2 2 0 2

( , ) ( )
( ) (17)

IIB B Cos t p p
B Cos t p p
η τ ωτ ω η θ

ω τ ω η θ γ
= − − +

+ − − + +
 

Now the appropriate values of ݐ଴ and ߠ଴ should be 
chosen, to make the two phases become equal.  

                      
1 0 1 0

2 0 2 0 2 1

0
(18)

p t
p t
θ ω
θ ω γ γ
− =⎧

⎨ − + =⎩
 

By solving the system we have: 

                       
1 2

0 1
2 1 1 2

(19)t p
p p
γ γ
ω ω
−

=
−

 

                   
1 1 2

0 0 1
1 2 1 1 2

(20)t
p p p
ω γ γθ ω

ω ω
−

= =
−

 

If the denominator of the fraction be zero, which is 
equivalent to ߱௦ ൌ 0 (see (21)), the system will not have 
any solution. 

                      
1 2 2 1

1 2

(21)s
p p

p p
ω ωω −

=
+

  

So we can conclude that ܤ஁ሺߠ, ,ߟ஁஁ሺܤ ሻandݐ ߬ሻ have the 
same relation and this is the evidence of the first assert. 
For the rotor of BDFM, ߱ଵand ߱ଶ are substituted by ߱௦, 
and frequencies are equal, hence denominator never 
equals zero, other than ߱௦ ൌ 0. 
According to the stated lemma, losses can be calculated 
with each arbitrarily selection of γ specially γ=0. 

1 1 1 2 2 2( , ) ( ) ( ) (22)B t B Cos t p B Cos t pθ ω θ ω θ= − + −

                       2 1( ) (23)s p pψ θ= −  

   1 1 1 2 2 1( ) ( ) ( ) (24)sB B Cos t p B Cos t pθ ω θ ω θ ψ= − + − +  
Before starting simulation, Eqs. (25-27) are defined for 

simplicity: 

                          
2

1

(25)k ω
ω
ω

=  

                          
2

1

(26)B
Bk
B

=  

                   
2 2

1 1

(27)A B
Bk k k
Bω

ω
ω

= =
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A.     Simulation of B-H Hysteresis Loop of the Stator 
 
For simulation the value of the B and ௗ஻

ௗ௧
 are needed: 

1 1 1 2 2 1( , ) ( ) ( )sB t B Cos t p B Cos t pθ ω θ ω θ ψ= − + − +

[ ]
1 1 1 1 2 2 2 1

1 1 1 1 1 1

( , ) ( ) ( )

( ) ( ) (28)

s

A s

B t B Sin t p B Sin t p
t

B Sin t p k Sin k t pω

θ ω ω θ ω ω θ ψ

ω ω θ ω θ ψ

∂
= − − − − +

∂
= − − + − +
 

         
1 ( , )( , ) ( ) ( ( , )) (29)B tH t g f B t

t
θθ θ− ∂

= +
∂

 

f and g functions are influenced by the core material and 
can be determined by experiment. In [17] and [18], to 
model the hysteresis phenomenon, the presented 
dynamical system is used, and some polynomial 
expressions are proposed to estimate the f and g 
functions. Among them, the most accurate model to 
estimate the losses in sinusoidal excitation, has a third 
degree and a fifth degree binomial for “dissipation 
function” and “restoring function”, respectively. In this 
model, the third and fifth harmonic coefficients of the 
inductor current, can be calculated directly from the 
coefficients of the polynomial, by applying sinusoidal 
voltage to the nonlinear inductor. In spite of useful results 
for evaluation of the harmonic currents, the accuracy of 
the model is not enough for precise simulation. 
Hyperbolic model is one of the most accurate and 
applicable model for calculation of the restoring function 
[19]. In general the model can be written as: 

                           ( ) ( )sinh (30)H B aB b cB= + ×  

where a, b and c are constants, which can be determined 
by the B-H curve for a specific material. 
For M5T30 core restoring function can be written as: 

            ( ) ( )617.13 3.631 10 sinh 10.89 (31)H B B B−= + ×  

For current simulation, this hyperbolic function is 
selected. For dissipation function, an arbitrary function is 
suggested, with typical form of dissipation functions of 
magnetic materials. The form of this function conformed 
to the dissipation function of the Arnold 4178-S-2 
supermalloy core [11] (see Fig. 3). 
 

 
Fig. 3 losses function of the Arnold 4178-S-2 supermalloy 

 
This curve can be divided into three lines, two lines with 
the same slope in left and right sides, with different 
heights, and another line, which connects the two, 
through the origin. The slope of the middle line is four or 
five times of the two lines. So a hyperbolic tangent and a 
linear function are proposed for estimation of the 

function. The numerical values of the function 
parameters will change final results, but general behavior 
of hysteresis loops can be simulated by typical 
parameters. In this case the operating point and variable 
parameters ranges has been set before running the 
simulation (Table I). 

Table I. The numerical value of the function parameters 
variable 

1 ( )B T 1 ( )Hzω kω  Bk  sψ time
value 0.72 2 50π × (0, 2]  (0, 2]  (0, ]π 10s
 

      

1 10.72 , 2 50 , (0,2], (0,2]
0 : 0.001:10 sec, [0, ] (32)

B

s

B T Hz k k
t

ωω π
ψ π

= = × ∈ ∈
= ∈     

6( ) 17.13 3.631 10 sinh(10.89 ) (33)f B B B−= + ×  

( )-1 ( ) 0.01 tanh 0.04 (34)g x x x= +  

Fig. 4 and 5 depict the restoring and dissipation 
functions. 
 

 
Fig. 4 restoring function  

 

 
Fig. 5 Dissipation function  

 
The simulated hysteresis loop with ሺ݇஻, ݇ఠ,Ψ௦ ൌ
ሺ1,0.1,0.157ሻ is shown in Fig. 6. 
 

 
Fig. 6 simulated hysteresis loop 

 
B.       Relationship of the Losses with respect to ܤଶሺ݇஻ሻ 
and ߱ଶሺ݇ఠሻ 
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Hysteresis loss can be determined by calculation of 
variations of the stored energy in the magnetic field [7], 
through integration of the dot product of magnetic flux 
density (B) and field intensity (H) on a specific time 
period and volume. Assuming that the directions of the 
vectors are the same we can write: 

        
. (35)

V T V T

BW H dB dv H dt dv
t

⎡ ⎤ ⎡ ⎤∂
= =⎢ ⎥ ⎢ ⎥∂⎣ ⎦ ⎣ ⎦
∫ ∫ ∫ ∫  

Using (35), hysteresis losses in the rotor and stator of the 
BDFM can be calculated. 
 

1) Rotor Hysteresis Loss 
Hysteresis loss for a sinusoidal field is well known. One 
of the practical equations is Estein Metz equation [6]:  

               ( )3/ (36)n
h H mW K B f W m=  

where ܤ௠is the maximum flux density and n and ܭு are 
constant coefficients. For simplicity, the n=2 estimate is 
used, which corresponds to the linear region of the 
magnetization curve. So, (36) can be written as: 

             
2 2

, (37)
2

h
r h m s r m s

KP B Bω κ ω
π

= =    

where rκ  is the constant of the rotor hysteresis losses. 
Because the rotor has one frequency, the hysteresis losses 
can be calculated easily: 

      
1 1 2 2

1 1 2 1

( ) ( ) ( )
( ) ( ) (38)

r s s

s s r

B B Cos t p B Cos t p
B Cos t p B Cos t p
ϕ ω ϕ ω ϕ

ω ϕ ω ϕ ψ
= + + +

= + + + +             

                        
2 1( ) (39)r p pψ ϕ= −  

         

1 22 2
1 2 2 1

1
1

( ) 2 ( )

( ) (40)
1

r r

B r
s

B r

B B B B B Cos

k SinSin t p tg
k Cos

ϕ ψ

ψω ϕ
ψ

−

⎡ ⎤= + +⎣ ⎦
⎛ ⎞

× + +⎜ ⎟+⎝ ⎠

 

The pick of hysteresis loop depends only on the 
amplitude of the ܤ௥ሺ߮ሻ. 

        
2 2

, 1 2 2 12 ( ) (41)r h r r sP B B B B Cosκ ψ ω⎡ ⎤= + +⎣ ⎦  
by averaging the above equation on φ, we have: 

        
2 2 2 2

, 1 2 1 1 (42)r h r s r B sP B B B kκ ω κ ω⎡ ⎤ ⎡ ⎤= + = +⎣ ⎦ ⎣ ⎦  

On the other hand: 

              
1 2 2 1

1 2

(43)
1

p
s

p

k kp p
p p k

ωω ωω
−−

= =
+ +

 

So, 

      
( )2 2 3

, 1 1 / (44)
1

p
r h r B

p

k k
P B k W m

k
ωκ
−

⎡ ⎤= +⎣ ⎦ +
 

2) Stator Hysteresis Loss 
 
To calculate this loss, numerical simulation is proposed. 
The instantaneous power dissipation is calculated in each 
θ angel of stator core first, and the result is averaged over 
time, then the angel θ.  
The hysteresis loss can be written as:

             

 
( ) ( ) ( )3

,
1 / (45)s h T

BP H dt mean HB W m
T t

θ ∂
= =

∂∫   

where ( ),s hP θ  is stator hysteresis loss density, as function 
of the stator angle.  
Fig. 7 depicts the result of numerical simulation of the 
stator hysteresis loss variations with respect to frequency 
ratio (݇ఠ) and flux ratio (݇஻). 
 

 
Fig. 7 BDFM hysteresis losses toward different frequency ratio 

and stators rotary fields ratio (B=0.72 T) 
 
For this simulation ܤଵ ൌ 0.72 ܶ is set, where the peak 
value of the machine field at ݇ఠ ൌ 1 and ݇஻ ൌ 1 is set on 
the knee point of the B-H curve. At this operating point, 
loss value can be interpolated as quadratic function of 
frequency ratio. However, if the field increases, the core 
will be saturated. In spite of that, it can be seen from the 
Fig. 8, which is for B=1T, that the loss contours are 
parabolic again. 
 

 
Fig. 8 BDFM hysteresis losses toward different frequency ratio 

and stators rotary fields ratio (B=1 T) 
 
We can see: 

                 
2 2

, 1 1(1 ) (46)s h s hP B k ωκ ω ζ= +  

In this parabolic formulation, 
hζ  varies by ݇஻. To find 

the relationship between 
hζ  and ݇஻, the flux density is 

regulated at 0.72 (B=0.72), and for some different values 
of ݇஻ the simulation is repeated. Table II shows the 
variable changes: 
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Table II. hysteresis losses toward field variations 

 
 
Fig. 9 portrays the graph of data of the Table II in 
logarithmic scale. Again the relationship is quadratic, 
similar to the previous quadratic relationship of loss and 
frequency ratio. 
 

 
Fig. 9 Data of the Table II. 

Interpolation of data results in: 

                    
2 , 0.74 (47)h h B hkζ α α= =  

          ( )2 2 3
, 1 1(1 ) / (48)s h s h AP B k W mκ ω α= +

 
It can be seen that the relationship is quadratic again. The 
coefficient of quadratic function is assumed linearly 
dependant on ω1 and proportional to square of B1. 
Assigning power of two for B1 is valid, since the peak 
value of B1 is far enough from the knee point of B-H 
curve, when B2 is equal to zero; and the B-H curve is 
assumed linear. 
 
7. Conclusions 
 
In this paper, an analytical hysteresis modelling approach 
was presented for brushless doubly fed induction 
machines. The base model was a dynamical system, with 
dissipation and restoring function characteristics. This 
model was used for calculation of hysteresis loss in the 
stator of BDFM, where two different frequency fields 
exist. After simulation of hysteresis loops of the field, the 
hysteresis loss was calculated and subsequent curves 
were fitted on quadratic functions, resulting in quadratic 
relationship between stator’s hysteresis loss, and 
multiplication of control winding supply frequency (ω2) 
and field amplitude (B2).  
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