
 

International Conference on Renewable Energies and Power Quality (ICREPQ’14) 

Cordoba (Spain), 8th to 10th April, 2014 
Renewable Energy and Power Quality Journal (RE&PQJ) 

 ISSN 2172-038 X, No.12, April 2014 

 
 

 

 

Wind speed distributions in the Italian coasts  

 
T. Soukissian1, F. Karathanasi1, F. Falcieri2 

 

1 Hellenic Centre for Marine Research  

Institute of Oceanography 

PO BOX 712 – 19013 Anavyssos (Greece) 

Phone/Fax number: +30 22910 76420/+30 22910 76323, e-mail: tsouki@hcmr.gr, flwrak@gmail.com 

 
2 CNR - ISMAR 

Arsenale-Tesa 104, Castello 2737/F, 30122, Venezia, Italia 

Phone/Fax number: +39 041 2407995/+39 041 2407940, e-mail: francesco.falcieri@ve.ismar.cnr.it 

 

 

 

Abstract. For offshore wind energy assessment it is 

necessary to appropriately model and describe wind climate. In 

this connection, the Rayleigh and Weibull distributions are 

widely suggested for offshore wind speed modelling. Although 

the use of these distributions is theoretically consistent, in 

practice, they are often proved to be inadequate. In two recently 

published papers some, less known, multi-parameter 

distributions (Johnson SB, Kappa and Wakeby) were introduced 

and proved to describe more accurately the stochastic behaviour 

of wind speed measurements obtained from buoys located in 

entirely different sea areas of the world. In order to evaluate their 

fitting performance with reference to coastal wind speed data, in 

this paper we assessed long-term time series obtained from ten 

meteorological land-based stations across the Italian coasts. The 

obtained results confirmed that the Johnson SB, Kappa and 

Wakeby distributions are of general validity for any wind data 

set analysed, since they performed fairly well for the modelling 

of coastal wind speeds as well. These distributions adapted better 

than the Weibull and are suggested as reliable and prominent 

candidates for the modelling of offshore and coastal wind speed 

in any sea area.  
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1. Introduction 

 
Over the last decades, renewable energy resources are 

becoming increasingly important due to the rise in fossil 

fuels prices, harmful emission and environmental 

problems. The development of more reliable and cost 

efficient technologies is therefore required, at both local 

and national level. Wind energy is considered one of the 

most advantageous comparing to the conventional forms 

of energy, which explains its steadily increasing growth. 

In Europe, the available onshore sites for the development 

of a wind park have been considerably reduced. In this 

connection, offshore wind power is an attractive 

alternative in combination with the higher and less 

variable sea wind intensities. In the Mediterranean Sea, no 

offshore wind farms (OWFs) have been erected yet 

despite its priority amongst North European countries; 

however there is a huge anticipation for the investment of 

offshore wind energy projects, especially in the eastern 

(Greece) and western part (Spain, France, Italy) of the 

basin; see also [1].  

 

Such investments require, first of all, a reliable and 

accurate knowledge of the prevailing long-term wind 

climate in the candidate area for OWF development. This 

is achieved by the accurate estimation of offshore wind 

speed and consequently, the available offshore wind 

power. In this way, the aforementioned prerequisites along 

with the local bathymetry comprise the basic technical 

criteria for selecting the potential zones for OWF 

installation. To this respect, the long-term probability 

density function (pdf) of offshore wind speed is a key 

component of wind climate description. Although the use 

of the Rayleigh and Weibull distributions (the latter 

generalizing Rayleigh with one or two additional 

parameters) in wind speed modeling is theoretically 

consistent, in practice, they are often proved to be 

inadequate; see for example [2, 3, 4]. Furthermore, many 

authors suggest that it is essential to select the most 

appropriate distribution for the wind climate of a specific 

area by implementing statistical fitting procedures and not 

use the Weibull distribution indiscriminately; see e.g. [5].  

 

Two recent assessments of several potential offshore wind 

speed distributions, based on long-term wind speed time 

series obtained from oceanographic buoys, can be found 

in [6] and [7]. In [6], the five-parameter Wakeby and four-

parameter Kappa were proposed for the first time for wind 

speed modeling and provided excellent fits to the analysed 

wind data. In [7], the four-parameter Johnson SB 

distribution was also proposed for the first time and 

proved to be a very robust and flexible candidate 

distribution for wind energy assessment as well as wind 

speed modeling along with the Wakeby and Kappa 

distributions. The wind data analysed in [7] were obtained 
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from oceanographic buoys located in the Eastern (Spanish 

waters) and Western (Greek waters) Mediterranean Sea.  

 

The main objective for this paper is the assessment and 

fitting of various probability distributions in order to 

investigate their efficiency and capability in modeling 

wind speed data obtained from coastal meteorological 

stations. Another important aspect of this work is the 

evaluation of the Johnson SB distribution using wind data 

from shore, which are characterized by very different 

wind climates with respect to the neighboring offshore 

areas. In particular, long-term wind speed measurements 

from ten coastal meteorological stations of the Italian 

coasts located in the Ionian/Adriatic and the Tyrrhenian 

Seas are analysed; see Section 2. All the examined 

locations exhibit diversity in the prevailing wind climates. 

In Section 3, an initial assessment of the performance of 

twenty analytic distributions is made and the quality of the 

statistical fits are firstly evaluated in terms of the 

Kolmogorov–Smirnov, the Anderson–Darling and 2  

goodness-of-fit tests, and finally, in terms of the 

coefficient of determination 2

aR . From this assessment, 

the fitting results of eleven selected probability 

distributions (all of which appearing consistently among 

the best fits) are presented in detail and compared with the 

Weibull distribution for each coastal station. Finally, in 

Section 4, some conclusions, remarks and suggestions are 

provided.  

 

2. Wind measurements 
 

The analysed data in this work were obtained from ten 

meteorological stations across the Italian coasts covering 

Adriatic/Ionian as well as the Tyrrhenian Seas. The data 

were kindly provided by “Servizio Mareografico” of the 

“Istituto Superiore per la Protezione e Ricerca 

Ambientale” (APAT) in the context of the FP7-

COCONET project; http://www.coconet-fp7.eu/.  

 

The data consist of wind speed time series that cover a 

time period of 15 years. The wind measurements have 

recording period 600 s and recording interval 1 h. The 

locations of the stations are shown in Figure 1. The 

preliminary statistical analysis of these data (sample size, 

mean, minimum, maximum, standard deviation and 

coefficient of variation) with the corresponding 

measurement time periods are presented in Table 1. The 

highest mean wind speed corresponds to Bari location. 

The overall maximum value of wind speed (38.507ms-1) is 

observed in Napoli and the highest values of standard 

deviation (3.635 ms-1) and coefficient of variation 

(106.357) correspond to Trieste location. 

 

3. Fitting analytic probability distributions 

to wind speed data 
 

Twenty analytic probability distributions were fitted to the 

wind speed data for the examined coastal locations. The 

analysis following in this section showed that the four-

parameter Johnson SB (called hereafter JSB), the four-

parameter Kappa (KAP) and the five-parameter Wakeby 

(WAK) distributions were consistently the only 

distributions providing fits in the top ten for all data sets. 

Thus, the results corresponding to these distributions will 

be analytically presented for the examined locations and 

will be compared with the results obtained from the 

Weibull (WEI) distribution.  

 

 

The JSB, KAP and WAK distributions are very flexible, 

successfully mimicking several known distributions. The 

JSB distribution as well as the KAP and WAK 

distributions will be presented in the following subsection. 

For the other distributions examined here, see the relevant 

wind engineering literature as e.g.: for the lognormal, 

WEI, Gamma and Log-Pearson 3 see [6] and references 

cited therein, for the Generalized Gamma see [8], etc. The 

parameters of the WEI distribution have been estimated 

using the maximum likelihood method (MLM).  

 

A. The Johnson SB, Wakeby and Kappa distributions 

 

The JSB distribution is defined as follows:  
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and the corresponding cumulative distribution function 

(cdf) as follows:  
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where     is the Gaussian cdf, with x     , 

    , 0  ,    , 0  . The parameter 

 

 
Figure 1: Locations of coastal meteorological stations (from 

Google maps) 
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Table 1: Basic statistical analysis of wind data 

Name Recording period Valid N Mean Minimum Maximum Std. Var. Coef. Var. 

Bari 1998 – 2012  117558 4.318 0.000 32.700 2.890 66.924 

Carloforte 1998 – 2012 120045 2.917 0.000 19.500 2.067 70.841 

Catania 1998 – 2012 118062 3.412 0.000 24.200 2.466 72.284 

Empedocle 1998 – 2012 103670 3.766 0.000 24.802 3.066 81.427 

Genova 1998 – 2012 119247 2.803 0.000 21.700 2.236 79.766 

Napoli 1998 – 2012 119349 3.033 0.000 38.507 2.442 80.492 

Palermo 1998 – 2012 119610 2.274 0.000 17.800 1.726 75.923 

Palinuro 1998 – 2012 119336 2.121 0.000 35.600 2.183 102.961 

Taranto 1998 – 2012 120441 3.703 0.000 31.810 2.829 76.396 

Trieste 1998 – 2012 115081 3.417 0.000 36.000 3.635 106.357 

 

  corresponds to the range,   is the location parameter 

(lower bound),   and   are shape parameters, while 

0   indicates a symmetrical distribution.  

 

The JSB distribution can be symmetrical or asymmetrical 

(left-skewed or right-skewed) and uni-modal or bi-modal 

(for 0.5   JSB has a bimodal shape), while it can be 

partly shaped as uniform between the left and right tails of 

the variable. The JSB distribution covers an extended 

variety of distributional shapes (including, among others, 

the gamma and beta distributions) and an extended region 

in the skewness-kurtosis space; see [9]. For the estimation 

of the JSB distribution parameters the method of moments 

(MOM) has been used in this work; see [10, 11]. 

However, let us note that inference on JSB distribution is 

not an easy task, since it is, mathematically, a rather 

complex distribution.  

 

The WAK distribution is defined, in an inverse manner, as 

follows:  
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where    PrX XF F x X x   . The probability density 

is given implicitly as:  
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The parameters   and a  are location parameters and  , 

 ,   are shape parameters. The domain of WAK is 

x    , if 0   and 0  , and 

x a        , if 0   or 0  . For relation (3) 

the following conditions hold: 1) 0a   or 0  , 2) 

0    or 0      , 3) if 0a  , then 0  , 4) 

if 0  , then 0  , 5) 0  , 6) 0a   , see also 

[12], where these restrictions are provided. WAK 

distribution imitates several known and widely used 

distributions (as e.g. log-normal, extreme value, 

generalized Pareto and log-gamma distribution). For 

estimating the parameters of WAK the method of L-

moments is used; see [12, 13].  

 

The four-parameter KAP distribution includes as special 

cases the Generalized Logistic, Generalized Extreme 

Value and Generalized Pareto distributions. The KAP 

probability density function is defined as follows:  
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is the corresponding cumulative distribution function. The 

quantile function (inverse cdf) is given as  
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For the KAP distribution the following conditions hold: 

x     , if 0  , x    if 0  , 

 1x h      , if 0h  , x     , if 0h  , 

0   and x   , if 0h  , 0  . For estimating the 

parameters of KAP distribution the method of L-moments 

is used.  

 

B. Fitting criteria and goodness-of-fit tests  

 

Before the application of any fitting and parameter 

estimation procedure, the wind data were corrected and 

filtered and erroneous values were discarded. The 

Kolmogorov-Smirnov (K-S) goodness-of-fit test was the 

first criterion for the selection procedure of the most 

efficient distributions that were examined, being the most 

widely used; see [14]. Anderson-Darling (A-D) and 2  

goodness-of-fit tests were additionally used. These three 

tests are not equivalent. The K-S test aims to examine 

whether the empirical cdf of the data closely follows the 

theoretical cdf. For the K-S test, the critical values are 

independent from the examined cumulative distribution 

function, which should be fully pre-specified. The A-D 

test is more sensitive to deviations in the tails of the 

distribution than the K-S test. The 2  goodness-of-fit test 

examines whether the observed frequencies of some 

possible events are consistent with the theoretical 
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frequencies obtained from the examined analytic 

distribution. Let us note that different goodness-of-fit 

statistics may generate inconsistent ranking orders of fit 

performance among the candidate pdfs; see [15, 16].  

 

The JSB and WAK distributions are the only distributions 

appearing consistently among the three best fits for 8 out 

of 10 examined coastal locations according to all three 

goodness-of-fit tests. In addition to this, according to the 

K-S test, the JSB distribution provided the best fit for 1 

out of 10 examined locations and the second best fit for 5 

out of 10 examined locations. According to the A-D test, 

the JSB provided also the best fit for 7 out of 10 examined 

locations and the second best fit for 3 out of 10 examined 

locations and, as for the 2 -test, the best and second best 

fit for 1 and 3 out of 10 examined locations respectively. 

These results clearly support the generality, robustness 

and efficiency of the JSB and WAK distributions to 

model wind speed for coastal locations of diverse wind 

climates. In addition to the JSB, the following 

distributions provided fair fits for all examined locations 

and were further assessed: KAP, Gamma (GAM), 

Generalized Gamma (GNG), Pearson 6 (PEAR6), 

Generalized Extreme Value (GEV), Burr (BUR), 

Generalized Pareto (GPAR). Rayleigh (RAY) and WEI 

distributions were also included for comparison purposes.  

 

For the final evaluation of the obtained statistical fits the 

coefficient of determination 2

aR , has been estimated. 

Since in the estimation of 2

aR  the respective plotting 

positions (see below relation (7)) for the examined 

distributions are unbiased, this criterion is used by many 

authors for fitting evaluation purposes; see e.g. [2, 6, 17, 

18].  

 

The specific plotting position that is used for representing 

the empirical distribution in the PP plots is  

 

   1iF x i n  , 1,2, ,i n .   (7) 

 

 iF x  provides an unbiased estimate of the observed 

cumulative probabilities independently of the distribution 

considered. The coefficient of determination 2

aR  is given 

by  
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The estimates F  are obtained from the examined 

theoretical probability models, while iF , 1,2, ,i n , is 

provided by relation (7) above.  

C. Best fit results  

 

As mentioned in the previous subsection, the evaluation 

of 2

aR  was made for WAK, JSB, KAP, GAM, PEAR6, 

GEV, GNG, BUR, GPAR, RAY and WEI distributions. 

The corresponding results were plotted appropriately 

scaled, i.e., using  2log 1 aR  instead of 2

aR , since the 

latter often results in values very close to each other and 

thus, is hardly distinguishable in a graph.  

 

In Figure 2, the WAK distribution provided the best fit in 

4 out of 10 locations (for 5 locations provided the second 

best fit), KAP provided the best fit in 1 location (the 

second and third best fits for 4 and 2 locations 

respectively) and JSB distribution provided the best and 

second fit once and the third best fit also for 2 locations. 

In general, the JSB, GAM, GNG, KAP and WAK 

distributions appeared within the ten best fits (among all 

the examined distributions) for all the examined locations. 

It is worth noticing that, especially for the JSB, KAP and 

WAK distributions, the coefficient of determination 2

aR  

took constantly high values.  

 
 

 
Figure 2: Coefficient of determination for the examined 

distributions in the Italian coasts 

 

In conclusion, the JSB and WAK distributions were 

systematically among the five best fits for both goodness-

of-fit tests and coefficient of determination for all 

locations in the Italian coastline. Consequently, these 

distributions were the most reliable and prominent 

candidates for the probabilistic modeling of coastal wind 

speed.  

 

In Figure 3 and Figure 4, the histograms of wind speed 

together with the fitted WEI, WAK, JSB, GNG, GAM 

and KAP distributions were plotted for the coastal 

locations Catania and Taranto, respectively. It is clear that 

the WEI distribution underperforms compared to the other 

examined distributions.  

 

Let us also note that the WAK distribution is double 

bounded for all coastal locations, except for Palinuro and 

Trieste, while the JSB distribution is, by construction, 

always double bounded. Potential ramifications of the 
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bounded-ness of the examined distributions with extreme 

value analysis are discussed in [7].  
 

 

 
Figure 3: Wind speed histograms and fitted distributions for 

Catania 
 

 

 
Figure 4: Wind speed histograms and fitted distributions for 

Taranto 

 

4. Conclusions 

 

In this paper, we model long-term wind speed time series 

obtained from ten meteorological stations, located at the 

Italian coasts, examining twenty analytic probability 

models. An initial evaluation of the obtained fits was 

based on three statistical tests and, at the final stage, on 

the coefficient of determination. Among the examined 

probability distributions, the Weibull and Rayleigh 

distributions have been also considered for comparison 

purposes.  

 

The Johnson SB, Kappa and Wakeby distributions 

describe quite accurately the empirical distribution of 

wind speed at the coasts of Italy and have much better 

adaptability than the Weibull distribution. Taking into 

consideration the overall behavior of these distributions, 

one may conclude that they are very promising candidate 

distributions for the probabilistic modeling of both 

offshore and coastal wind speed. In this respect, they shall 

be taken into consideration in any attempt for wind speed 

modeling along with any other widely used distributions.  
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