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Abstract. Fast and accurate signal frequency estimation has 
great importance i.a. in renewable energy systems and power 
control systems. The energy produced by these systems shall 
fulfill quality requirements as defined in the respective directives 
and standards. More accurate and faster grid signal frequency 
estimation (which can be used to control the inverter) can 
improve the energy quality. This article presents an overview of 
methods for spectrum interpolation and signal frequency 
estimation and a generalized method for very accurate and fast 
frequency grid estimation by using the Fast Fourier Transform 
procedure and maximum decay sidelobes windows. An important 
feature of this algorithm is the elimination of the impact of the 
conjugate component on the estimation result. The article shows 
the statistical properties of the frequency estimator as well as the 
effect of noise for the estimation. The results of the simulation 
show that the algorithm can be successfully used for a fast and 
accurate estimation of the grid signal frequency i.a. in renewable 
energy systems and power control systems. The accuracy of the 
frequency estimation is in the order of 5·10-11 Hz for a 5 ms 
measurement window. Using  different windows  from  the  
discussed  family allows to adjust to the actual requirements of 
estimation. 
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1. Introduction 

 
Obtaining electrical energy from renewable energy 

sources has become very popular in recent years in many 
countries around the world [1]. Renewable energy systems 
and power control systems are composed of several 
blocks, in which frequency estimation has great 
importance. Estimation of a sinusoidal frequency is also 
very important in many other areas of science and 
technology (e.g. medicine [2], electronics [3]). In the 
power industry the estimation must be accurate because of 
the need for the assessment of the power quality. When the 
quality is lower, the financial losses are greater [4] and the 
energy system operates with lower overall efficiency. Low 
quality might be caused by an external source (e.g. a 
photovoltaic system) connected to the grid that has no 

appropriate controls. In other renewable energy systems 
accurate and fast estimation of the grid signal parameters 
is also essential for proper production energy in different 
weather conditions [5]-[10]. Accurate and prompt 
detection of these parameters (especially frequency) is 
necessary for the generation of appropriate signal and for 
the compliance with certain quality standards of energy 
production [11]-[13]. 

The IEC 61727-2002 standard requires that, under 
certain conditions, a photovoltaic system has to stop 
power output no later than after 50 ms (after 2.5 cycles of 
a grid signal that is characterized by the frequency of 50 
Hz) [13]. The next standard, IEEE Std 929-2000, requires 
a system turn-off after two cycles of 60 Hz grid signal 
[14].  

A classical spectral method of analysis is often used 
to estimate the sinusoidal signal frequency. Such methods 
use time windows and the Fast Fourier Transform (FFT) 
algorithm [15]-[17]. Additionally, by using the methods 
of spectrum interpolation (IpDFT) a significant 
improvement in the estimation accuracy is obtained [18]-
[34]. An important group of methods are the methods of 
DFT interpolation, which account, in their equations, for 
the phenomenon of spectral leakage. These methods 
include the group of multi-point weighted interpolations 
of DFT methods (MWIDFT) [19], [20], [24] and a linear 
interpolation of the DFT (LIDFT) [25]-[27], based on an 
approximation of the unit circle by a polygon. 

This paper presents a generalization of the 
interpolation method MWDIFT [28] for maximum decay 
sidelobes windows at an arbitrary order, which allows to 
estimate the frequency of the fundamental sinusoidal 
component of a multi-frequency signal in a short 
measurement time (measurement of 0.5-2.5 measured 
signal  cycles). This model is adequate for 50/60 Hz 
power signal which has harmonics and for time 
measurement requirements in renewable energy systems. 
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2. Frequency estimation using maximum 
decay sidelobes windows 
 
A multi-frequency signal can be described in the time 

domain as follows: 
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where  
Ai - amplitude of the i-th component,  
fi  - frequency of the i-th component, 
φi - phase angle of the i-th component. 
 
 After a process of sampling (with a frequency of 
fs = 1/T), the x(t) signal is represented by a series of discrete 
N values (samples) xn = x(nT), where n = 0, …, N-1. The 
frequency fi in (1) can be normalized with respect to the 
measurement time NT by λi = fi NT frequency, and, in 
general, λ = f NT [Hz/Hz] for any f. The unit of λ is 
marked as a bin. The frequency λ  is also referred to as 
CiR (Cycles in Range) [28]. It emphasizes that λ  specifies 
the number of sinusoidal component cycles in the time 
window that comprises N signal samples.  

The cosine windows family is an important group of 
time windows. The time window samples wn of these 
windows are defined in [20], [29]-[31] as follows:  

 

( )
1

0

2
1 cos , 0,..., 1

H
h

n h
h

nh
w a n N

N

π−

=

= − = −∑
   

   (2) 

 
The maximum decay sidelobes windows (I class Rife-
Vincent windows, binomial coefficient windows) are 
among these windows. They were defined for the first time 
by Rife and Vincent in 1970 [29], and have maximum 
decay amplitudes of sidelobes from all cosine window 
families defined by (2). The relations for the maximum 
decay sidelobes window coefficients are [31]: 
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and H is the window order that equals the number of 
coefficients ah. Special cases are a rectangular window 
(H = 1) and a Hanning (Hann) window (H = 2).  

The spectrum of I class Rife-Vincent windows can be 
approximated for H > 1, λ  N, N  1 by [20], [30]: 
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In the paper, this property of the group of multi-point 

weighted interpolations of DFT methods has been used to 
estimate the frequency of the sinusoidal component. The 
value of estimated frequency is low (grid frequency) and 
the impact of the conjugate component is important. 

The MWIDFT methods that consider the impact of 
long-range leakage are still being developed [19], [20], 
[32], [33]. The method from [28] allows to determine the 
normalized frequency λ1 (9), which considers the effect of 
a conjugate component with a frequency of -λ1 (Fig. 1). 
This method uses the Hanning time window and it is 

based on the relevant three consecutive points of the 
spectrum X(λ) defined as: 
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for λ = k-1, k, k+1 (values Xk-1, Xk, Xk+1) around the main 
lobe. 
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Fig. 1. The DtFT spectrum and its DFT samples of sinusoidal 
signal as a sum of two components; example for a) rectangular 
window and b) Hanning window for CiR = 1.1.  

 
3. Algorithm for any H  

 
When λ ∈ [−λx, λx] where λx stands for the range of λ 

for which the effect of other signal components is 
negligible, based on (5) and accounting for two 
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components, with a frequency λ1 and -λ1, the Fourier 
transform is:  
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Transforming (12) allows to obtain generalized 

equations for any H: 
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4. Simulation research 

 
To confirm the proper functioning of this algorithm, 

special simulation studies in Matlab were performed. 
In the first phase, the systematic error for a pure 

sinusoidal signal without noise versus the number of 
samples N, k parameter and the width of the measurement 
window CiR for H = 3 was examined. The phase angle φ1 

was changed from 0 to 2π rad every 0.01 rad. The tests 
were performed for different values of N, which were the 
powers of 2 (32, ..., 256) because of using the FFT radix-2 
algorithm. 

The relative error |δf1| for the worst phase angle case 
of the proposed method is inversely proportional to N4. 
The increase in the number of samples N (at a constant 
CiR value) decreases the value of the systematic error 
(Fig. 2). For H = 3 the minimum of |δf1| is obtained for 
k = 1 and CiR below approx. 2.15, k = 2 and CiR above 
approx. 2.15. For various H values this limit is different: 
for H = 2 - approx. 2.08, for H = 4 - approx. 2.29, for 
H = 5 - approx. 2.49, for H = 6 - approx. 2.86, for H = 7 -
approx. 3.35 (simulations include CiR values only up to 
3.0). 

 In the second phase, the accuracy of the estimation of 
the signal frequency in the presence of white noise was 
tested for different H values, to determine the statistical 
properties of the method with respect to the Cramer-Rao 
bound (CRB), which sets the lower limit of the estimator’s 
variances for the optimal method. The variance estimator 
was determined by calculating the eMSE error – Empirical 
Mean Square Error. The number of instantiation was 106 
and the CiR, k and N values were 1.9, 1 and 512 
respectively. The values of H were changed from 2 to 7. 

 

 
Fig. 2. The systematic error δf1 of the f1 estimation for the 
method of Section 3 for H = 3 and various k: |δf1| is inversely 
proportional to N4, and δf1 minimum is for k = 1 for CiR below 
approx. 2.15 and k = 2 for CiR above approx. 2.15. 

 
Maximum decay sidelobes windows are 

characterized by parameters such as: MLBW (Main Lobe 
Band Width), ENBW (Equivalent Noise Band Width), 
and decay of sidelobes (in dB/oct). The values of these 
parameters increase as the H value increases. The wider 
the main lobe, the lower frequency resolution of the 
window. The higher the ENBW value, the greater the 
influence of the noise on the spectral analysis of the 
measured signal. The faster the decay of the sidelobes, 
the better the component separation in the signal 
spectrum. This is especially important if the components 
have small amplitudes.  

The increase in the value of H increases the value of 
the frequency error as a function of SNR value (Fig. 3). 
The f1 frequency with reference to the Cramer-Rao bound 
(the quotient of the values) is approximately 1.8 for H = 2 
and approximately 4.5 for H = 7 (Fig. 4). 

 

 
Fig. 3. Statistical properties of the proposed method for 
estimating the f1 frequency: the root-squared eMSE (taken as the 
error) method, (standard deviation) and the reference to the 
CRB Cramer-Rao bound as a function of SNR and for 
CiR = 1.9, k = 1 and six H values in the measurement window. 

 

https://doi.org/10.24084/repqj12.210 23 RE&PQJ, Vol.1, No.12, April 2014



 
Fig. 4. Statistical properties of the proposed method for 
estimating the f1 frequency with reference to the Cramer-Rao 
bound: the quotient of the values from figure 3. 

 
5. Conclusions  

 
This article presents a general formula that is used to 

estimate the frequency of sinusoidal signal using the Fast 
Fourier Transform and maximum decay sidelobes 

windows for the values of 1 < H ≤ 7. Using different 
windows from the discussed family allows to adjust to the 
actual requirements of the estimation to the appropriate 
applications. 

Digital simulations confirm the correctness of the 
formula (13) for any H. The ratio of the estimated f1 

standard deviation (eMSE square root in the case of an 
unbiased estimator) to the minimum variance estimator 
standard deviation (CRB bound) remains constant within 
specified limits, regardless of the SNR (Signal to Noise 
Ratio) ratio value for typical tested SNR values. The 
increase in the value of H increases the value of the 
frequency error as a function of SNR value. The estimated 
frequency with reference to the Cramer-Rao bound (the 
quotient of the values) is approximately 1.8 for H = 2 and 
approximately 4.5 for H = 7. The lower the H value, the 
closer the curve of variation is to the CRB bound. In 
comparison with the other spectral methods, this value is 
from approximately 2.14 to approximately 11.24 times 
lower [34]. The error values and the CRB bound decrease 
together with the increase in the SNR ratio.  

The value of the relative error of the signal frequency 
estimation without the presence of noise depends on the N, 
k, CiR and H values. The value of this error is constant and 
amounts to approximately 10-12 when the CiR value is 
equal to 1.5, H value equal to 2 and when N = 256. For the 
5 ms measurement window, the value of the relative error 
is constant and amounts to approximately 5·10-11. In 
comparison, the relative errors of the other spectral 
methods amount to approximately 10-7 Hz [34]. 

The systematic error for the worst phase angle case of 
the proposed method is inversely proportional to N4. The 
increase in the number of samples N (at a constant CiR 
value) results in the decrease of the systematic error value. 
The increase in the H value (at a constant CiR value) 
results in the increase of the systematic error value.  

 

The simulation results show that the presented 
algorithm can be successfully applied to frequency 
estimation of the grid signal e.g.  in a renewable system 
and power control system. The new method can 
contribute to the improvement of the quality of produced 
energy and increase the efficiency of the entire power 
system. The possibility of using different windows from 
the discussed family has some advantages – it is possible 
to match the specific window data to the actual 
requirements of electricity generation. In addition, the 
discussed estimation method applies to one sinusoid, but 
it can be generalized to a multi-frequency signal. The 
implementation of the algorithm is straightforward and 
doesn't take much time.  
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