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Abstract. Linear-switching hybrid DC/DC converters consist 
of a voltage linear regulator (classic NPN or nMOS topologies 
and LDO) connected in parallel with a switching DC/DC 
converter. In order to control these hybrid structures, different 
strategies exist, allowing to fix the switching frequency as a 
function of some parameters of the linear regulator. This article 
compares two control strategies that, although they can be 
applied to the same circuital structure of linear-assisted 
converter, they are slightly different. The first one, reported in 
previous literature, cancels completely the average current 
through the linear regulator in steady state to achieve a reduction 
of power losses. Thus, the efficiency of the whole system 
increases and almost equals the one of the standalone switching 
converter. The proposed approach, in spite of a slightly 
increment of linear regulator’s losses, reduces the output ripple 
that is caused by the crossover distortion of linear regulator 
output stage. 
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1. Introduction 
 
The present article compares two control strategies that 
can be applied to the same circuital structure of a linear-
assisted converter. However, they are significantly 
different. The first one (that we will denominate ‘A’ and is 
reported in previous literature [1],[2]), tries to completely 
cancel the current through the linear regulator in the 
steady state in order to achieve a reduction of power 
losses. Thus, the efficiency of the whole system increases 
and almost equals the one of the switching converter. It 
considers as the “main” block the switching DC/DC 
converter, and the linear regulator as an auxiliary module. 
 
On the other hand, this proposal (strategy ‘B’) allows 
some average current flow through the linear regulator. In 
spite of a slightly increase of linear regulator’s losses, this 
strategy reduces the output ripple due to the crossover 

distortion of its output stage. Thus, this approach 
considers as the “main” block the linear one, and the 
switching one as the auxiliary module. 
 
2. Control Strategy ‘A’ 
 
The first of the two strategies of control that is considered 
in the current article is implemented on the converter of 
figure 1, where the implementation of the linear-assisted 
converter consists of a linear regulator (including 
transistors Q2a and Q2b, which form an output 
complementary push-pull stage) and a switching DC/DC 
converter connected in parallel with the first one. In this 
case, the switching converter is a step-down type (buck 
converter) without the output capacitance. With this 
strategy, the switching converter is considered as a “main” 
block, whereas the linear regulator is considered as the 
auxiliary block that “assists” the first one when it is not 
able to provide output currents with high variations (that is 
to say, with high slew rate of the load current). 
 
The control strategy consists of sensing the current 
through the linear regulator and, transforming it into a 
voltage (thanks to the current sensing element Rm), 
controlling the switching frequency of the DC/DC 
switching converter. The main objective of this one is to 
provide all the load current in steady-state conditions (to 
obtain high efficiency of the whole system). Thus, in 
steady state the linear regulator does not provide current to 
the load, although it maintains the output voltage to an 
acceptable DC value. 
 
However, when variable output loads are driven, the linear 
regulator provides high transitory changes of the current 
in order to maintain constant the output voltage of the 
whole structure (figure 2). Therefore, we can name to this 
type of control as strategy control with null average 
linear regulator current. Resistors R1 and R2 of the 
Schmitt trigger determine the width of its hysteresis cycle 
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and, thus, the maximum value of the switching frequency 
of the DC/DC converter. 
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Fig. 1. Basic structure of linear-assisted converter with control 
strategy ‘A’. 
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Fig. 2. Principle of operation of a linear-assisted converter with 
control strategy ‘A’. 
 
This control strategy allows to obtain an efficiency almost 
equal to the switching converter, because the current by 
the linear block and, thus, the dissipation in its pass 
transistors is, practically, neglected. Nevertheless, it 
suffers from a limitation referring to maintaining the 
output voltage free of significant ripples due to the well-
known crossover distortion inherently present in push-pull 
amplifiers. 
 
Notice that although the output voltage remains, in 
average, around the output voltage prefixed by means of 
the reference VZ, the ripple is approximately 0.6 V (figure 
3). The reason of this ripple is due to the output 
complementary transistors in the linear regulator. In fact, 
in every switching period, they switch from their cut off 
region to their linear zone and vice versa. As a 
consequence, during the transitions from cut off to 
conduction and vice versa, due to the well-known 
crossover distortion, a lack of regulation of the output 
voltage takes place, originating a ripple that, in certain 
applications, can not be tolerated. 
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Fig. 3. Detail of the output voltage ripple and base-emitter 
voltage of transistors Q2a and Q2b of the linear regulator in the 
steady state for the linear-assisted converter in figure 1. 
 
3. Control Strategy ‘B’ 
 
The proposed strategy in this paper is analyzed using the 
step-down switching converter shown in figure 4 [3], [4]. 
The linear regulator consists of a push-pull output stage 
(transistors Q2a and Q2b). In this strategy, the main 
objective of the DC-DC switching converter is to provide 
most of the load current in steady-state conditions to 
obtain also a good efficiency of the whole system. Thus, 
thanks to the incorporation of the reference voltage Vref at 
the inverting input of the analog comparator, the linear 
regulator provides a small part of the load current in 
steady state, maintaining the output voltage to an 
acceptable constant value. 
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Fig. 4. Basic structure of linear-assisted converter with control 
strategy ‘B’. 
 
As a matter of fact, if the current demanded by the load is 
inferior to a maximum value of current, which we will 
denominate switching threshold current, Iγ, the output of 
comparator CMP1 will be at low level, disabling the 
DC/DC switching converter and, thus, the current through 
inductor L1 will be zero. Therefore, the voltage linear 
regulator supplies the load RL, providing all the output 
current (Ireg=Iout). 
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When the current demanded by the load overpasses this 
current limit Iγ, automatically the output of the comparator 
will pass to high level, causing that the current through the 
inductance L1 grows linearly according to: 
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In that expression, the conduction collector-emitter 
voltage of transistor Q1 is ignored. IL(τ1) is the initial value 
of the current through inductor L1 at the time instant TON. 
Considering that the output current Iout=Ireg+IL, and is 
assumed to be constant (equal to Vout/RL), the linear 
regulator current Ireg will decrease linearly, until becoming 
slightly smaller than Iγ. At this moment, the comparator 
will change its output to low level, cutting the transistor 
Q1 and causing that the current through the inductor 
decreases according to equation (2): 
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In this expression, it is considered that the diode D1 is 
ideal (with zero direct voltage). IL(τ2) is the maximum 
value reached by the current flowing through the inductor 
(just at the beginning of the interval TOFF). When the 
inductor current decreases to a value in which Ireg>Iγ, the 
comparator changes its state to high level, repeating the 
cycle again. 
 
Without hysteresis in the comparator, the switching point 
of the DC/DC switching converter is given by the 
switching threshold current, Iγ, of the linear regulator. 
This one can be adjusted to a value thanks to the gain of 
the current sensing element, Rm, and the reference voltage 
Vref, according to the expression: 
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R
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In case of a comparator without hysteresis, intrinsic delays 
of the electronic circuits determine a small hysteresis that 
limits the maximum value of the linear-assisted converter 
switching frequency (figure 5). However, with the 
objective of fixing this switching frequency to a practical 
value, in order not to increase significantly losses by the 
switching process, it is important to add the 
aforementioned hysteresis to the comparator CMP1. 
 
Note that, in contrast to strategy ‘A’, with this new 
strategy, the linear regulator can be considered as the 
“main” block, and the switching converter as the auxiliary 
block. This one “assists” to the first one when the linear 
regulator supplies an excess current bigger than threshold 
Iγ. 
 
It is important to emphasize that reducing the value of the 
power dissipated in the pass transistor of the linear 
regulator increases the efficiency of the set, even with 
significant output currents. Therefore, it is important to fix 

the current limit Iγ to a commitment value between the 
minimum necessary to operate the regulator properly but 
without penalizing its good characteristics of regulation. 
What is more, with the purpose of obtaining a good 
regulation of the output, without significant ripple in it, it 
is mandatory that the current provided by the linear 
regulator is bigger than zero. 
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Fig. 5. Principle of operation of a linear-assisted converter with 
control strategy ‘B’. 
 
The output voltage and the base-emitter voltage of 
transistors Q2a and Q2b at steady state are shown in figure 
6. Comparing these graphs with those in figure 3, shown 
in the same conditions, it becomes evident that with the 
proposed approach (realization ‘B’) the output ripple is 
reduced significantly. 
 
In figure 7 we can appreciate the system behavior when 
the threshold current Iγ is 5 mA. Notice that the regulation 
of the output voltage gets worse significantly. It is 
accentuated when Iγ is reduced down to a value near to 
zero. Therefore, the switching current threshold must be a 
value such that: (1) It significantly does not increase the 
power dissipation of the pass transistor in the linear 
regulator and does not diminish excessively the efficiency 
of the regulator, and (2) It does not significantly 
deteriorate the regulation of the output voltage. 
 
Thus, we can denominate this type of control as a strategy 
control with nonnull average linear regulator current. 
For instance, for a practical implementation of a linear-
assisted converter using discrete components on board, for 
load currents lower than 10 A, the suitable value of Iγ that 
fulfills the two previous conditions is found to be between 
10 mA and 50 mA. 
 
Finally, notice that if the load current is below Iγ, the 
switching block (the DC/DC converter) is disabled in 
order to minimize its losses. Thus, only the linear 
regulator provides the output current for slight load 
conditions. Figure 8 shows the experimental efficiency 
versus the load current for the two strategies. It is shown 
the comparison of the control strategy 'A' and the proposed 
by authors (strategy 'B') for Vout=5 V. It is shown four 
different Iγ values:  0 mA (strategy 'A'), and 10 mA, 50 mA 
and 100 mA (all three for strategy 'B'). Note that, if Iγ is 
low, the efficiency is not almost affected, reducing the 
output ripple too. 
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Fig. 6. Detail of the output voltage ripple and base-emitter voltage of transistors Q2a and Q2b of the linear regulator in the steady state in 
figure 4. 
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Fig. 7. Detail of the output current Iout and the linear regulator current Ireg at the start transient of the converter in figure 4 with Vin=10 V. It 
can also be observed the response of the circuit to an input voltage step from 10 V to 13 V at t=20 μs, and a variation in the load resistance 

from 5 Ω a 2.5 Ω at t=40 μs. The switching threshold current Iγ is fixed at 5 mA. 
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 Fig. 8. Experimental efficiency for the control strategy 'A' and 
the proposed by the authors (strategy 'B') with Vout=5 V. It is 

shown four different Iγ values:  0 mA (strategy A), and 10 mA, 50 
mA and 100 mA (all three for strategy 'B'). 

 

4.  Conclusion 
 
This paper has shown the comparative of two strategies of 
control sensibly different for power DC/DC linear-assisted 
(or hybrid) converters based on the association of a linear 
regulator in parallel with a switching converter. The first 
of the two strategies (strategy ‘A’ or with null average 
value in the linear regulator current) allows to obtain a 
high efficiency, similar to switching converters because, 
in the steady state, the power dissipated in the linear 
regulator is practically zero. However, it has as 
inconvenient the presence of a ripple output voltage 
because the pass transistor of the output linear stage is 
switching between the cut and the conduction in every 
switching period. 
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The proposal presented in the article (control strategy ‘B’ 
or nonnull average value in the linear regulator 
current), allows a little current through the linear stage 
that causes that the efficiency of the set diminishes 
slightly. However, it allows to obtain an output voltage 
practically free of spurious ripples. 
 
This paper allows to affirm that, the maximum value of 
the current that circulates through the linear regulator 
(switching threshold current), must be fixed to a 
commitment value so that it does not increase the power 
dissipation in the pass transistor of the linear regulator 
significantly and does not make excessively diminish the 
efficiency of the set, but does not deteriorate significantly 
the regulation of the output voltage. 
 
Finally, note, as an additional advantage of linear-assisted 
converters with this second strategy, that typical low pass 
filter capacitors, which are required in switching 
converters (and whose values, in certain applications, may 
become important), in this case they can be suppressed, 
since the linear regulator already makes the low pass filter 
function. Therefore, from this point of view, it can be said 
that, in an effective form, the voltage linear regulator acts 
as an active low pass filter, removing high frequency 
components generated in the modulation process. 

 
Acknowledgement 
 
This work has been partially supported by the Spanish 
Ministerio de Economía y Competitividad by project 
DPI2013-47799-C2-2-R 
 
References 
 
[1] R. Vázquez, A. Barrado, E. Olías, A. Lázaro. ‘Theoretical 

Study and Implementation of a High Dynamic 
Performance, High Efficiency and Low Voltage Hybrid 
Power Supply’. Proceedings of the IEEE 32nd Annual 
Power Electronics Specialists Conference, 2001 (PESC 
2001), vol. 3: pp. 1517–1522. 17-21 June 2001. 

[2] A. Barrado, R. Vázquez, E. Olías, A. Lázaro, J. Pleite. 
‘Theoretical Study and Implementation of a Fast Transient 
Response Hybrid Power Supply’. IEEE Transactions on 
Power Electronics, vol. 19 (nº 4): pp. 1003-1009, July 2004. 

[3] H. Martínez, A. Conesa. “Modeling of Linear-Assisted DC–
DC Converters”. European Conference on Circuit Theory 
and Design 2007 (ECCTD 2007), 26th-30th August 2007. 

[4] A. Conesa, H. Martínez, J. M. Huerta. “Modeling of Linear 
& Switching Hybrid DC–DC Converters”. 12th European 
Conference on Power Electronics and Applications (EPE 
2007), September 2007. 

 

 

https://doi.org/10.24084/repqj14.534 966 RE&PQJ, Vol.1, No.14, May 2016




