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Abstract. The  available  tools  for  the  analysis  of  fluid-

dynamic  processes  inside  turbomachines  are nowadays 

extremely powerful and versatile. Despite this, the use of 

simplified procedures, such as the 2D meridional approach, is 

still relevant, due to its great running simplicity and good  

accuracy. The  full  three-dimensional  analysis,  in  fact,  even  if  

it  could  model thoroughly details  the fluid-dynamic  

phenomena  occurring in  turbomachines,  requires  huge  

computational  resources  and  longer computational times  with  

respect  to  two-dimensional  approaches,  and  this  is  justified  

only  after  a  simplified preliminary study of the machine. Also 

management simplicity, consistence of the required data and 

usability of results are aspects that  should  not  be  ignored,  

above  all  for  the  possibility  of  creating  tools  easily  

available  for turbomachines designers. A  through  flow  method,  

formulated  in  terms  of  pressure  rather  than  velocity,  for  the  

analysis  of multistage axial turbines is presented. It is designed 

to provide  reliable  radial  distributions  of  circumferentially  

averaged  values  for  the  fundamental unknowns. The proposed  

form of the radial equilibrium equation can represent also sharp 

velocity gradients in radial direction and deal with very realistic 

situations as discussed in the applications presented. The code 

has been used for the analysis of  both an experimental multistage 

gas turbine and an industrial steam turbine. The results obtained 

have been compared with the circumferentially averaged results 

of a viscous fully 3D commercial code. 
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1. Introduction 

 
The aim of this work is to realize a semi-empirical method 

able to predict the performances of a small steam turbine 

that can be employed in combined cycle power plants for 

ship propulsion. In fact, this kind of plants are put forward 

in order to  improve the overall efficiency and thus reduce 

emissions. Throughflow calculations are widely employed 

in industrial applications  due to the high stability of the 

procedure and to its accuracy in terms of  results [1]. 

Moreover it is important that these procedures present 

high stability, robustness and quick convergence rate in 

order to create easily available tools for preliminary 

analysis of turbomachines. 

 These procedures are in most cases semi-empirical, since 

they employ experimental correlations both for losses 

and for row exit angle evaluation. Losses and angles are 

usually taken as distributed in a uniform way in span 

wise direction. These methods provide overall results in 

accordance with those obtained from 3D CFD 

calculations, but this agreement cannot be always 

obtained also for the  local values of fundamental 

unknowns.  

Several throughflow procedures which employ local (and 

not overall) correlations both for losses and flow angle 

evaluation have been proposed in the open literature. 

Despite this, in order to evaluate the spanwise 

distributions of thermodynamic unknowns, it is 

fundamental that the method has high stability and 

robustness in order to properly evaluate high spanwise 

gradients caused by secondary effects, which in turn 

provide high variations of basic unknowns close to both 

hub and shroud. 

 

2.  Calculation model 
 

For the resolution of the analysis problem it is assumed 

that the whole geometrical parameters are given. In the 

general formulation, in order to get the flow conditions in 

each point of the machine, it is necessary to calculate two 

thermodynamic variables and the three components of 

the velocity vector. Thus, if no further simplifying 

hypothesis reduces the problem dimension, the 

fundamental unknowns are five, and so the fundamental 

equations, which enable to solve the problem, have to be 

five. The calculation model is based upon the 

fundamental assumption of steady flow, axisymmetric 

flow with axisymmetric flow surfaces and adiabatic 
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process [2]. Besides an axisymmetric cylindrical 

coordinate system (θ, z, R), sketched  in Fig. 1, has been 

adopted. 

 
Fig.1. Coordinate system (θ, z, R) for machine representation  

 

The streamline slope is assumed constant or with small 

variations in each control station, and its value can be 

estimated from the geometrical characteristics of the 

machine which are known in the analysis approach. 

Moreover we choose to study the stator rows in the 

absolute reference frame, while the rotor rows are 

investigated in the relative reference frame. This 

assumption leads to employ the same equations set for 

both type of rows, but on the other hand it requires the 

introduction of equations, that we call “changing 

equations” which allow to transfer the fundamental 

equation from a reference frame to the other. In addition 

two control parameters, which denote the operating 

conditions of the machine, have to be chosen: the 

rotational speed n and the outlet static pressure pu. Also 

inlet boundary conditions have to be assigned and the total 

quantities are assumed. A further simplifying assumption 

is considered: the calculation stations are set outside the 

blade channel. As a result of all the listed assumptions the 

problem dimensions change from three (general case) to 

two, and the fundamental unknowns from five to four. So 

one has to choose only four  fundamental equations instead 

of five. Moreover if additional unknowns, called auxiliary 

unknowns, will be introduced into the fundamental 

equations, it will be necessary to introduce as many 

equations as the number of auxiliary unknowns. 

 

A. Fundamental and auxiliary  equations 

 

   It is convenient [2] to assume as fundamental unknowns 

the total enthalpy H, the total pressure P, the velocity v and 

the flow angle ε in the absolute reference frame for stator 

rows and in the relative reference frame for rotor rows. 

Thus, the fundamental equations, chosen for the problem 

posing, are the continuity equation in integral form, the 

energy equation in thermodynamic form and two 

correlation equations providing the flow angle and the 

total to total energy loss, which depends on  the total 

pressure drop through the row. 

If we call “reference frame unknowns” the four absolute 

unknowns for the case of the stator rows or the relative 

unknowns in the case of the rotor rows,  the choice to 

study the rotor in the relative reference frame allows to 

use a general set of equations for both kind of rows 

(stator or rotor). So the employed equations are: 

 

( ) ( )1122 rHrH =                               (1) 

( ) ( ) ( ) ( )δερ −=−==∫ 1cos 112222222 mmmmrdrrrrv f

R

R

e
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&&&& (2) 

( ) ( ) ( ) ( )gjfi ttfrPrPrP ,112,11122 σσ ==         (3) 

( ) ( )gmfl ttfr ','22 εε =                       (4) 

 

Equations (1), (3) and (4) are written for a general 

streamline, while equation (2) is integrated from the inner 

radius Ri to the outer radius Re. 

In (1) H is the total enthalpy in its own reference frame, 

thus the absolute total enthalpy (ht) for stator rows or the 

relative total enthalpy (htr) for rotor rows. Analogous 

considerations can be made for the other fundamental 

unknowns: the total pressure P (pt or ptr), the velocity 

magnitude v (c or w) and the flow angle ε (α or β). 

One can observe that, for the solution of the equation set 

from (1) to (4): 

- there are further unknowns (called auxiliary 

unknowns) in addition to fundamental ones, 

- all the fundamental unknowns are functions of the 

radius 

The auxiliary unknowns are the density ρ2(r2) in (2) and 

the fluid-dynamics parameters in (3) and (4). These 

quantities are functions of the fundamental unknowns 

and can be expressed by: 
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To explicit the velocity magnitude v2(r) in (2) it is 

necessary to resort to the radial equilibrium equation [3] 

that, for the given assumptions, is: 

  

dX

dR

R

senv

dX

dp ε
ρ

221
=                             (7) 

 

where X is the direction of the motion equation projection 

line. As (7) is an integral equation, the constant of 

integration has to be evaluated. As the presented method 

is developed in terms of pressure, the value of the static 

pressure at the outlet section of the machine is given. 

Thus the classic constant of integration v0 can be replaced 

with a first guess set of values for the static pressure in 

the control stations, which has to be updated during the 

iterative procedure till the value of the mass flow in each 

control station becomes consistent with the values of the 

other stations. 

https://doi.org/10.24084/repqj09.474 845 RE&PQJ, Vol.1, No.9, May 2011



To define how of total pressure P(r) and flow angle ε(r) 

depend on the radius, it is necessary to make use of  local 

instead of overall correlative relationships. Furthermore, 

the total enthalpy at row  exit H(r) is  known for the stator 

row case and it can be evaluated from the corresponding 

value of the absolute total enthalpy through the use of 

changing equations for the rotor row case. As the total 

pressure and the flow angle distributions can be evaluated 

only if the streamline radii are known, it is necessary to 

employ the continuity equation to determine these values: 

 

( ) ( ) ( ) ( )Rmrdrrrrv

R

Ri

2222 cos &=∫ ερ                     (8) 

For the real gas, one can employ thermodynamic tables 

which express the fluid properties as a function of two 

fundamental unknowns: 

12 HH =                                 (9) 

( ) ( ) ( )22222 ,,,'',' vPHftfttf flgmfl εε εεε ===       (10) 

( ) ( ) ( )22221112 ,,,'',' vPHfPtfPttfPP figjfi εσσσ ===      (11) 

 

then the entropy is: 

( )222 , PHfs s=                            (12) 

 

thus the other thermodynamics quantities can be  evaluated 

from the definition of total state: 

 

( )222
~, psfh h=                            (13) 

( ) 2

2222 2 uhHv +−=                        (14) 

 

B. Resolution method 

 

As described in the previous paragraph, the resolution 

method proceeds through two different steps: 

- In the first step the information of the imposed inlet 

total quantities is transferred to all control stations 

from upstream to downstream.  

- In the second step the static pressure distribution is 

updated from the outlet section upstream in order to 

reduce the gap between the values of mass flow rate 

in two consecutive sections. 

The calculation procedure runs till the continuity equation 

is satisfied in each control station.   

 

 
 
Fig. 2. Computational procedure diagram 

 

Furthermore, it is necessary to employ a further iterative 

process in order to arrange the streamline position until the 

mass flow rate reaches the same value in each stream tube. 

This procedure is really important because during the 

calculation process the radial gradients of fundamental 

unknowns modify the velocity distribution, thus the 

continuity equation could not be satisfied for each stream 

tube. As first guess solution one can draw the streamline 

layout leaning on points whose radius subdivides the 

meridional channel into streamtubes with equal area. 

 

C. Calculation of fundamental unknowns at row exit 

 

Using the reference frame unknowns, the employed 

equations for the resolution procedure to evaluate the 

fundamental unknowns at row exit are the same for both 

stator and rotor rows [4]. Thus, if we indicate with 1 the 

inlet station and with 2 the outlet station of the general 

row, we can write, for sake of simplicity for a perfect gas, 

a general equations set: 

12 HH =                                 (9) 
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The above equations set combined with the radial 

equilibrium equation is employed for each streamline. 

For rotor rows the radial equilibrium equation, written in 

terms of static pressure, in a form that we call simplified 

form due to the chosen simplifying assumptions, is: 
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One evaluates the density: 
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thus the velocity magnitude: 
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Then equations (19) and (20), combined with equation 

(18) lead to the expression: 
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The whole equations set, matched with the radial 

equilibrium equation, is therefore combined with changing 

equations which express the relationship between the 

absolute and relative reference frame unknowns. 

 

D.  First guess solution and pressure updating process 

 

Being the proposed procedure an outlet fixed pressure 

method, one has to employ as auxiliary unknown the static 

pressure in each control station. Thus one has to set a 

appropriate first guess value of static pressure distribution 

for each control station. In fact, even if the choice of the 

first guess solution can’t modify the calculation results, it 

affects the iterative cycle convergence rate and above all 

its robustness and stability. 

For the present work we chose as first guess solution a 

thermodynamic distribution of static pressure along the 

control stations, based on the evaluation of both isentropic 

enthalpy drop of the different stages and a fixed polytropic 

efficiency of the machine. 

To better understand the static pressure updating process it 

is useful to consider a single stage of the turbine and 

indicate with 1 the inlet station, with 2 the intermediate 

station between stator and rotor and finally with 3 the 

outlet station. As the inlet total parameters and the outlet 

static pressure are given, a variation of static pressure p2 

leads to opposite variations in mass flow rate values 

through stator (
2m& ) and rotor (

3m& ). Thus, a simple p2 

updating process can be employed as updating weight to 

the difference between 
2m& and 

3m& , that must be clearly 

equal to zero at convergence. 

 

3. Computer code 
 

A Fortran language computer code, based on equations 

illustrated in the previous paragraph, has been developed. 

In Fig. 4 its block diagram,  with main convergence 

processes, is presented. The integration process of radial 

equilibrium equation has been developed in two different 

ways: the Euler method and a four step Runge-Kutta 

model. For the present application these procedures 

provide very closed outputs, thus the integration method 

doesn’t affect the results significantly. For this reason the 

more simple Euler method has been employed. The code 

has been applied to both an experimental multistage gas 

turbine investigated at the University of Hannover [5] and 

a small multistage industrial steam turbine in order to 

assess the method skills to predict the fundamental 

unknowns of different kind of axial turbine (gas and steam 

turbines) which are employed in combined cycle plants.   

The experimental turbine has been widely investigated 

both experimentally and with numerical calculations [6]. 

Thus, several experimental and calculation’s results are 

available in open literature. 

Despite, in order to provide complete value of unknowns 

for all machine sections, a CFD 3D viscous calculation 

with software NUMECA [7], has been employed. 

 

 
Fig. 4. Computer code block diagram 

 

A. Application with imposed correlative parameters 

 

In a first application correlative parameters are assigned 

(flow angle and total to total loss coefficient) in order to 

evaluate the mismatch  between the procedure and the 

full 3D calculation results. These differences are due to 

only given assumptions and don’t consider local 

correlation procedures evaluation error. Thus, one 

imposes the circumferentially averaged correlative 

parameters from the results of the 3D CFD calculation:  

 

)()( 22 rr εε =                              (22) 

)()( 2,12,1 rr σσ =                           (23) 

 

In Fig. 5 the results from the proposed method and  from 

the 3D CFD procedure for the experimental gas turbine, 

are compared. The code has demonstrated high stability, 

quick convergence rate, and the results are in good 

agreement with those from the CFD calculation. 
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Fig. 5. Comparison of fundamental unknowns in the 6th control 

station (3rd stator row exit) for the experimental turbine 

 

In Fig. 6 and 7 the comparison between the results of the 

proposed method and those of  the CFD 3D procedure and 

an industrial method for the industrial steam turbine, is 

presented.  
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Fig. 6. Comparison of fundamental unknowns in the 6th control 

station (3rd stator row exit) for the industrial steam turbine 

 

The results are in a normalized form for confidentiality. 

Also for this application, the code, which employs 

appropriate thermodynamic steam tables, translated in 

Fortran language with appropriate subroutines, has 

provided reliable radial distributions of fundamental 

unknowns in accordance with both the 3D CFD calculation 

and the industrial method results, confirming its skills of 

robustness and high convergence rate. 
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Fig. 7. Comparison of fundamental unknowns in the 6th control 

station (3rd rotor row exit) for the industrial steam turbine 

 

B.  Application with local correlative equations 

 

In a further application the assignment of correlative 

parameters has been replaced with the introduction of 

appropriate local correlative equations able to provide the 

radial distribution of both loss coefficient and flow angle. 

For the evaluation of loss coefficient one chooses the 

model developed by Traupel [8], combined with the 

Petrovic distribution’s law [9]. For the evaluation of flow 

deviation angle a correlative equation model, proposed in 

a previous work by the author [10],  has been employed. 

In Fig. 8 the comparison between the results of the 

proposed method with local correlative equations and 

those of  the CFD 3D procedure for the experimental  

steam turbine for example at 3rd stator row exit is 

presented. Also in this application the code provides 

reliable radial distribution for the four fundamental 

unknowns which are consistent with the circumferentially 

averaged results of the 3D CFD calculation.  
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Fig. 7. Comparison of fundamental unknowns in the 7th control 

station (3rd rotor row exit) for the experimental turbine 
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4.  Conclusion 
 

A two-dimensional meridional computational method 

based on the use of the radial equilibrium equation for the 

analysis of multi stage axial turbines has been proposed. A 

computer code, written in Fortran language and based on 

the proposed method, has been developed. Thus the code 

has been employed to investigate both multi-stage axial 

gas turbine test case described in the open literature and a 

multistage industrial steam turbine. In a first application, in 

order to evaluate the stability and robustness of the 

procedure, the code has been applied by assigning the 

correlative parameters. The results have been compared 

with results of complex 3D procedures; they show high 

stability, quick convergence rate and above all reliable 

distributions of fundamental unknowns along the radial 

direction for both kind of turbine.  In a second application 

the code, combined with correlative equations providing 

radial distributions of both flow angle and total to total loss 

coefficient, has been employed. The obtained results 

confirm the procedure skills and show  good agreement 

with circumferentially averaged results from the 3D CFD 

method. The achieved results confirm that the proposed 

method can be employed for a simplified analysis of radial 

distributions of fundamental unknowns which provide the 

machine characteristics. The procedure versatility, 

demonstrated in the applications of the code to  both a gas 

and a steam turbine, confirms that the method can be 

employed as a valid instrument to evaluate the overall 

performance of the turbine in order to ascertain if it is 

possible to employ the investigated machine in a combined 

cycle.     
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*A  passage section orthogonal to the velocity [ ]2m  

εf  angle correlation 

σf  loss correlation 
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1

H

u       [-] 

h  thermodynamic enthalpy  [ ]kgJ  

H  
total enthalpy  ( )th  or relative total enthalpy ( )trh  

[ ]kgJ  

k  [ ]
vp CC  heat capacity ratio  [-] 

m&  mass flow rate [ ]skg /  

M Mach number [-] 

p  thermodynamic pressure [ ]Pa  

P  
total pressure ( )tp  or relative total pressure ( )trp  

[ ]Pa  

gR  specific gas constant  [ ]kgKJ  

R
 

normalized radius  [-] 

s  entropy [ ]kgKJ  

flfi tt ',  fluid-dynamics parameters for local correlations 

gmgj tt ',
 

geometrical parameters for local correlations 

T
 

temperature [ ]K  

u  blade speed [ ]sm /  

v  absolute ( )c  or relative ( )w speed  [ ]sm /  

X  motion equation projection line 

 

Greeks 

 δ lost mass flow fraction through row’s gap 

ε  absolute ( )α  or  relative ( )β  angle [ ]deg  

zR,,ϑ  axisymmetric coordinate system 

λ  streamline slope angle [ ]deg  

ρ  density [ ]3/ mkg  

1

2

P

P
=σ

 
loss coefficient based on total pressure ratio [-] 

ω  angular speed [ ]srad /  

ω    
1

22

21

−−

−

k

k

ufpP

PP  loss coefficient based on total 

pressure loss[-] 

Superscripts 

~ first guess 

 -    given value 

 

Subscripts 

0  referral status 

3,2,1  control stations 

f  lost, referred to the mass flow 

e  outer 

i  inner 
s  isentropic 
t  total 
tr  total  relative 
u  referred to the blade speed 
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