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Abstract. This paper shows how to compute the optimal 
distribution of the main elements of a photovoltaic (PV) plant 
with trackers connected to the network, to reduce some of the 
losses that occur in these facilities. In particular, the objective 
function of the proposed optimization process is the 
minimization of Joule losses that occur in electric conductors. To 
solve this problem, genetic algorithms (GAs), implemented in 
Matlab, have been used. Specifically the steady-state GA and the 
generational GA, which from random initial solutions, possibly 
far from optimal, will evolve into solutions that are increasingly 
closer to the desired optimum. Results have been very 
satisfactory, since all proposed examples have reduced by more 
than 50% electrical losses originated by not optimally designing 
the PV plant. 
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1. Introduction 
 
It is true that installation costs of photovoltaic grid 
connected systems (PVGCSs) are decreasing due to the 
standardization of technology and rising demand among 
other factors, but on the contrary, the premiums for the 
sale of electricity and subsidies for the initial installation 
of PVGCSs are also lower due to the inability of 
governments to maintain the high initial aid, therefore, 
any project of a PVGCSs which can optimize the energy 
output and reduce the cost of installation should be 
investigated and acted upon. 
On one hand, methods of sizing stand-alone photovoltaic 
(PV) systems [1] and PVGCSs with trackers [2] have been 
presented. On the other hand, studies have been devoted to 
increase the performance of PVGCSs, choosing and sizing 
inverters to take full advantage of the power generated by 
them [3-5] and how this sizing factor between the 
inverters and PVGCSs is affected by temperature and 
location of land where the PV plant is [6]. 
 

In a PV plant there are many electrical losses: mismatch 
losses, soil losses, angular losses, temperature losses, self-
shading losses, losses by inverter efficiency and Joule 
looses, and the relevance of each one on the others varies 
according to the characteristics of the PV system. In this 
paper we have decided to start the optimization problem 
of PVGCSs with trackers considering just Joule losses. 
So, we find, within the different variables that define the 
plant, the optimums that minimize Joule losses and 
increase the generated power. These variables are the 
distribution of the modules within the tracking structure, 
the choice of a particular PV module, the choice of a 
particular inverter and the distribution of trackers in the 
specific field. We will not consider among these variables 
rated power, since it has been shown in the studies 
mentioned above which the relationship between rated 
power of the inverter and rated power of the PV generator 
should be. 
 
To optimize the design of PV systems many artificial 
intelligence techniques have been used [7]. In this work, 
in particular, this optimization has been performed using 
genetic algorithms (GAs) [8], which, from random initial 
solutions, far from optimal, will evolve into more 
advanced solutions close to the desired optimum. This will 
be done using the Matlab programming language as the 
tool to build the GA. To the best of our knowledge, GAs 
have not yet been applied to optimizing the design of 
PVGCs with solar tracking. 
 
GAs were envisaged by Holland [9] in the 1970s as an 
algorithmic concept based on a Darwinian-type survival-
of-the-fittest strategy with sexual reproduction, where 
stronger individuals in the population have a higher 
chance of creating an offspring. GA’s are inspired by the 
way living organisms are adapted to the harsh realities of 
life in a hostile world, i.e., by evolution and inheritance. 
The algorithm imitates in the process the evolution of 
population by selecting only fit individuals for 
reproduction. Therefore, a GA is an optimum search 
technique based on the concepts of natural selection and 
survival of the fittest. It works with a fixed-size 
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population of possible solutions of a problem, called 
individuals, which are evolving in time. A GA utilizes 
three principal genetic operators: selection, crossover, and 
mutation [10-11]. 
 
Compared to conventional optimization methods, such as 
dynamic programming and gradient techniques, the GA 
has the ability to attain the global optimum with relative 
computational simplicity. GAs have been applied to the 
design of large power distribution systems [12] because of 
their ability to handle complex problems with linear or 
non-linear cost functions both, accurately and efficiently. 
In the proposed method, GAs are selected because they 
have shown to be highly applicable to cases of large non-
linear systems, where the location of the global optimum 
is a difficult task. Two variants of the GA have been 
studied (steady-state GA, and generational GA [13]) and 
the efficiency of each type has been verified given three 
problems which consist of areas with different 
dimensions, in which we tried to distribute and to choose 
the elements that compose the PV plant in a way such that 
fewer possible electric losses are generated. 
 
Based on the paper’s results that show the feasibility of 
GAs to address PVGCSs optimization problems, all 
possible losses can be included in the future with the goal 
of increasing the plant overall efficiency. It is enough to 
add terms to the cost function, and to design this cost 
function to maximize or minimize the desired criteria. The 
rest of the paper is organized as follows: Section 2 gives a 
description of the evolutionary strategies used. Section 3 
gives a description of the proposed problem and how can 
be solved with these evolutionary strategies. Section 4 
discusses the experimental framework and presents the 
analysis of results. Finally, in Section 5 we summarize our 
conclusions. 
 
2.  Proposed evolutionary strategies 
 
Two evolutionary strategies to establish a comparative 
performance study have been chosen. 
 
A. A steady-state genetic algorithm 
 
In a steady-state GA, only a few individuals are inserted in 
the population substituting some of the parents - usually 
one or two - in each generation (one in this case 
substituting the worst individual). Duplicates are not 
allowed in the population, so they are avoided in the initial 
population and also during the insertion in the evolving 
population along the execution of the algorithm. A simple 
crossover [14] is used. Selection is done by tournament 
selection, according to the selection probability of the 
individuals. The crossover probability is 1.0. 

 
B. A generational genetic algorithm 
 
Unlike the first one, in the generational strategy, the 
parent population as a whole is substituted by their 
children. With elitism, the best individual of each 
generation is conserved and inserted directly in the next 
generation. A BLX-α with α = 0.4 [14] crossover is 

chosen. Selection is done by tournament according to the 
selection probability of the individuals. The crossover 
probability is 0.9. 
 
3. Problem Statement 
 
The problem that arises is as follows. Given a rectangular 
field with specific dimensions and latitude, the algorithm 
will try to find the optimal configuration among the 
different possible configurations, so that the Joule losses 
in electrical conductors from trackers to inverters are 
minimal. Two-axis trackers have been chosen for the 
study as a situation in which PV modules operate closer to 
the nominal conditions, consequently, the algorithm 
considers the maximum tilt angle of the vertical axis for 
the calculation of the shadows length. Each configuration 
is a set of certain variables that define some aspects of the 
PV plant: the number of rows and columns of PV modules 
within the tracking structure, the value of the peak power 
of our PV modules, the intensity at the point of maximum 
power generated by the PV module, the dimensions of the 
PV module, and the nominal and maximum voltage input 
to the inverter. Each solution to our problem 
(chromosome) consists of eight independent parts (genes) 
as Fig. 1 shows. 
 
At the beginning of the algorithm the maximum and 
minimum values that these variables can take are 
specified, so that, in its search, the algorithm does not get 
out of these ranges and does not lead to completely 
inconsistent solutions. It is important to note that these 
ranges are input to the algorithm and they are fully 
adjustable at the beginning of the calculation. Thus, to 
solve our problem, the values found in the catalogs of the 
leading manufacturers of PV modules and inverters have 
been introduced, as limiting values for these ranges. 
 

 
Fig. 1. Sample of a chromosome with eight genes for our genetic 
algorithm. 
 
Moreover, some additional features have been introduced 
to determine the solutions that the algorithm provides, so 
that the relationships that exist between some of these 
variables are not broken. For example, if the algorithm in 
its search space is looking for higher power modules, this 
is conditioned upon the physical dimensions of these 
modules, which also increase in some proportion, and vice 
versa. Furthermore, the fitness function is scaled through 
ranking, in order to avoid premature domination of a 
possible superindividual and premature stagnation and 
also to benefit the evolution in the last generations. 
 
First, the algorithm calculates the tracking surface area 
with the rows and columns number of PV modules on the 
tracking structure, and the PV modules size. With the area 
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value and the land latitude the algorithm is able to obtain 
the maximum shadow length of the tracker and therefore 
to obtain the minimum distance between trackers to avoid 
shadows on the nearby trackers. In this way, the 
algorithm, while minimizing Joule losses, avoids self-
shading looses. 
 
The procedure following the algorithm to obtain the Joule 
losses cost function in electrical conductors that connect 
the solar trackers with inverters is as follows: first, from 
the open circuit voltage drops of PV modules (Voc) and 
the inverter’s input voltage (Vcc) determine how many 
solar modules in series is capable of supporting the 
inverter and how many sets of modules in parallel have to 
be in the solar tracker. This will allow us to know the 
intensity flowing in these electrical conductors. On the 
other hand, to calculate the Joule losses in the conductor, 
we need to know the section of these cables. This section 
is obtained through the condition of maximum allowable 
voltage drop in the PV plant as: 
 

                   2 L P
V

s Vµ
⋅ ⋅∆ =
⋅ ⋅

                    (1) 

Once we have the intensity and the section of the 
conductor through which this intensity will circulate, we 
can easily calculate the Joule power losses in that 
conductor as: 

                      22P R I= ⋅ ⋅                   (2) 
 
Each configuration is going to generate a different loss 
statement and therefore the losses for each of the possible 
configurations will give us the levels of competence of the 
chosen solution, which will allow the algorithm decide 
which solutions are best. The GA has been implemented 
in Matlab, and is composed of a main function from which 
four other auxiliary functions are called. Each of these 
auxiliary functions will be tasked to perform a function of 
the algorithm. 
 
4. Results and discussion 
 
The two described variants of the GA have been tested in 
three different scenarios when applied to the proposed 
problem of Joule losses reduction. Each scenario is 
determined by the characteristics of the field where the PV 
plant is located (see Table I). 
 

Table I. Scenarios under consideration 
 
 
 
 
 
 

Location: Granada, Spain (latitude 370 N) 

Below is the response given by each one of the GA 
models mentioned above to the proposed problems. These 
variants were constraint to the design ranges defined in 
Table II. 
 
 

 
Table II. Problem design ranges 

Parameter        Minimum         Maximum 

Nº Rows    5      9 

Nº Columns    8      14 

Module power (W)    150      290 

     I maximun power point (A)    4,49      10,23 

Module height (m)    1,324      2,000 

Module width (m)    0,800      1,061 

         Maximun inverter voltage (V)    700      880 

       Nominal inverter voltage (V)    600      800 

 
Steady-state genetic algorithm. Simple crossover [14] has 
been used and the best results have been obtained using a 
mutation probability of 10%. Fig. 2 shows the Joule 
losses, in percentage of nominal power, curves versus the 
number of iterations of the algorithm, for each of the three 
proposed sites. The best configuration obtained for each 
field can be seen in Table III. 
 
Generational genetic algorithm. Best results have been 
obtained applying a crossover probability of 90% and a 
mutation probability of 20%. The BLX-α with α = 0.4 
[14] crossover has been chosen for this model. Fig. 3 
shows the Joule losses curves. The best configuration 
obtained for each field can be seen in Table IV. 
 
If we analyze the results, first it is observed how initial 
losses are independent of the method used, which 
otherwise is logical since the starting solution is totally 
random. The power losses over installed capacity are 
between 1,10% and 1,18% for the largest surface field, 
between 0,66% and 0,75% for the average surface field, 
and between 0,40% and 0,44% for the smallest of the 
studied fields, which tells us that if we made the design of 
the system in an arbitrary way, those are the losses we 
would get. After applying the optimization algorithms it 
can be seen how they have found solutions whose losses 
have decreased to 0.61%, 0.45% and 0.27% for the higher 
field, middle and lower respectively, which means a 
reduction losses around 50%. 
 
Moreover, if we compare the results provided by each of 
the methods used it can be seen how generational GA is 
significantly above steady-state GA in terms of energy 
losses and iterations needed. Thus, if on one hand, steady-
state GA has found solutions whose losses are 0.67%, 
0.48% and 0.31%, generational GA has reduced them to 
0.61%, 0.46% and 0.27% for higher field, middle and 
lower respectively. In addition, the number of iterations 
required is also significantly lower in generational GA in 
which desired solution has been found at 500 iterations 
approximately, while steady-state GA needs around 1,500 
iterations. 
 

 
 

Field Dimension X (m) Dimension Y (m) 

1 250 150 

2 400 200 

3 120 90 
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Table III. Steady-state genetic algorithm results 
Field No. 

trackers 
Minimum 
loss (%) 

Rows Columns Pow(W) Imp(A) Y(m) X(m) Vmaxinv(V) Vnominv

(V) 
1 83 0,4786 6 8 158,38 5,52 1,67 0,89 879,88 739,46 
2 252 0,6658 5 9 151,06 5,24 1,71 0,88 811,79 765,55 
3 34 0,3103 6 8 169,21 5,81 1,33 1,06 878,57 765,32 

 

 
Fig. 2. Steady-state genetic algorithm simulation. 

 
 

Table IV. Generational genetic algorithm results 
Field No. 

trackers 
Minimun 
loss (%) 

Rows Columns Pow(W) Imp(A) Y(m) X(m) Vmaxinv(V) Vnominv(V) 

1 83 0,4587 5 8 169,54 5,15 1,97 0,99 831,65 760,44 
2 252 0,6118 5 9 162,70 5,22 1,75 0,93 876,88 651,38 
3 34 0,2714 5 8 176,81 5,20 1,52 0,97 849,98 695,06 

 

 
Fig. 3. Generational genetic algorithm simulation. 

 
 
Finally, if we look at the end solutions (chromosomes) we 
find a tendency to opt for relatively small PV trackers 
where the number of rows and columns of PV modules is 
not very high, and how as expected, to choose settings 
which maximizes the input voltage to the inverter to thus 
associate the minimum number of PV modules in parallel 
and make that the intensity be as small as possible. 
It is important to note that the electrical quantities (P, V, I) 
were obtained as actual values of two decimals. If the 
sensitivity of these parameters is too high for the 

commercial election of a PV module or an inverter of 
these features, you can force the algorithm without any 
problem to take these results with a smaller number of 
decimal places or integers. This undoubtedly will affect 
the obtained loss solution. 
 
5.  Conclusion 
 
In this work, the problem of optimizing the design of a 
solar PV plant with trackers has been addressed using a 
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GA written in Matlab. The algorithm is able to find the 
optimal solution to minimize losses caused by Joule effect 
in electrical conductors that carry electrical current 
generated by PV modules located on the trackers to the 
distribution transformer. 
 
Such optimization includes all the parameters that define 
the size and distribution of the components of a PV plant. 
Thus, given a field defined by its geometric characteristics 
and its latitude, the algorithm indicates the number of 
trackers that we should install, the PV modules that must 
be installed on these trackers and the type of inverter that 
must be chosen, to make the Joule losses minimal in the 
entire plant. Two variants or models of evolutionary 
algorithm: steady-state GA and generational GA have been 
used, and the obtained results compared in terms of 
electric power losses on electric power installed. 
 
After an analysis of the results we can conclude that 
generational GA is the algorithm that provides better 
results for our problem, while from the point of view of the 
PV plant design, the best solutions tend to be 
configurations with small PV trackers where the number of 
rows and columns of PV modules is not very high. 
Results have been very satisfactory, since all proposed 
examples have reduced by more than 50% electrical losses 
originated by not optimally placing the various elements 
that make up the plant without having to manufacture PV 
solar modules and solar inverters other than those currently 
on the market. 
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