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Abstract. In this paper the estate estimation of voltage 
and phase of voltage has been presented. In this paper the 
PMU has been used to observe some part of power system 
and ANN (Artificial Neural Network) has been used to 
estimation. In this paper it is assumed that the power 
system is partly observable by PMUs and the network is 
not full observable. This method has been implemented on 
IEEE 14-Bus. The results show that this estimation is 
impossible and the error of estimation is negligible.  
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State Estimation, PMU, Incomplete Observability, 
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1. Introduction 
Due to progress on Global Positioning System (GPS), 
the PMUs (Phasor Measurement Unit) become available 
and can be used to get data from different points of a 
power system. This data is necessary for the 
supervisory control applications or on-line states 
assessment of a large scale power system. PMUs are 
able to take the online phasor measurements. This 
simultaneous measurement is achieved with voltage 
and current waveforms sampled by GPS signals. The 
ability of simultaneous measurement of PMUs, 
improve the monitoring, control and in turn the 
security level of power networks [1].  

In this paper, it is assumed that the power system is 
not fully observable. This situation may happen due 
to PMU failure or construction limits. In these states 
some buses are unobservable. In this paper the ANN 
has been used to estimate the voltage magnitude and 
voltage phase of unobservable buses. It is shown in 
[2] that the voltage magnitude and phase are the best 
parameters to the voltage stability assessment, so 
these parameters can be used to the voltage stability 
assessment. This method has been implemented on 
IEEE 14-Bus. The results show negligible error. 
2. Estimation by ANN 
In this paper, the ANN has been used to estimate the 
voltages of unobservable buses. The power network 
has been simulated by DIgSILENT software and the 
ANN has been carried out in MATLAB software. As 
it is mentioned before, this idea can be used when 

there is complete observability but one of PMUs or 
its communication system has failed.  

The ANN should be trained by the results of the load 
flow analysis. The scenarios have been randomly 
selected for different load or generation levels, which 
are generated by using Mont-Carlo method. In this 
method, a random number (N) between 1 and Nb (the 
number of buses) is generated. This number 
determines the number of buses, which their 
parameters should be changed. If a bus is a PQ or PV 
bus, then in order to change its parameters, scenario 1 
or 2 should be selected, respectively. 

In the scenario 1, the load active power is randomly 
selected in the prespecified margin, as follows: 

min max
, , ,
PQ

L i L i L iP P P ∈     (1)
 

In the scenario 2, one of the following three cases, is 
selected with equal probability, (i.e., 1/3): 

Case 1: Only the load active power should be 
changed, as follows: 

min max
, , ,
PV

L i L i L iP P P ∈     (2)
 

Case 2: Only the active power generation should be 
changed, as follows: 

min max
, , ,

PV
G i G i G iP P P ∈     (3)

 

Case 3: Both, the bus load and generation should be 
changed by using the following constraints: 

min max
, , ,

min max
, , ,

PV
L i L i L i

PV
G i G i G i

P P P

and

P P P

 ∈  

 ∈  

   (4)
 

The ANN used in this paper has 13 nodes on the 
input and one hidden layer with 20 nodes. The 
Levenberg–Marquart back-propagation algorithm has 
been used to identify ANN parameters. 

In this step, 1000 different load flow scenarios have 
been simulated by DIgSILENT. 900 of them have 
been selected to train the ANN, and 100 scenarios 
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have been chosen to test the ANN. The error has been 
calculated for these 100 scenarios by the following 
equation: 

(%) *100
ActualValue EstimatedValue

Error
ActualValue

−=
 

The maximum and the average values of error are 
calculated, to compare the different cases. 

3. Installed PMU Number Reduction 
In this section, the proposed algorithm has been 
applied to IEEE 14-Bus network. 

A. IEEE 14-BUS Test System 

It is shown in [3] that the IEEE 14-Bus system is 
observable by using 4 PMUs. To model the PMU 
failure, one of the PMUs should not be used. The 
candidate PMU has been selected by using the 
proposed index, named SORI. If the bus i is observed 
by ni numbers of PMUs, then System Observability 
Redundancy Index (SORI) is expressed by the 
following equation: 

iSORI n=∑  

Based on this index, the PMU installed on bus 7 
should be considered as a failed PMU. In t 

his case, the bus 8 will be unobservable. But, the 
voltage of this bus can be estimated by the trained 
ANN. 

Based on SORI index, the candidate bus can be 
selected and listed in Table-1. 

Table-I: Eliminated PMUs in IEEE 14-Bus system 

No. of 
eliminated 

PMUs 

No. of PMUs Installed on 
buses 

0 4 2, 6, 7 and 9 

1 3 2, 6 and 9 

The error of the estimation of the bus 8 voltage 
magnitude (with 3 PMUs) is given in Table II and the 
error of estimation of the bus 8 voltage phase (with 3 
PMUs) is given in Table III.. 
Table-II: Error of estimation of voltage magnitude of bus 8  

(by using 3 PMUs). 
 Error % 

Maximum Error 0.0028 

Average Error 2.46 * 10-5 

 
Table-III: Error of estimation of voltage phase of bus 8  

(by using 3 PMUs). 
 Error % 

Maximum Error 0.0086 

Average Error 7.93E-05 

The errors represent the difference between the 
results calculated by ANN and simulated by 
DIgSILENT. Considering the Table-II and Table-III, 
it is obvious that the reduction of one PMU leads to a 
negligible error. It is clear that, the less the error, the 
more the cost. 

As previously mentioned, there is a trade-off between 
the error of the estimation and the cost of the 
monitoring system. Therefore, considering an 
acceptable range of error, it is possible to reduce the 
number of installed PMUs. 

4. Single Contingency Studies 
In this section, it is assumed that the voltage of buses 
should be estimated by the proposed algorithm after 
occurrence of a single contingency. The IEEE 14-bus 
has been studied and the results have been given in 
Table-IV and Table-V. 
Table-IV: Maximum error of voltage magnitude estimation 
of unobservable buses after occurrence of contingency in 

IEEE 14-bus system. 
No. of 

installed PMUs 

Maximum  

Error % 

Average  

Error % 

4  0 0 

3  21.84 6.57 

Table-V: Maximum error of voltage phase estimation of 
unobservable buses after occurrence of contingency in 

IEEE 14-bus system. 
No. of 

installed PMUs 

Maximum  

Error % 

Average  

Error % 

4  0 0 

3  54.65 0.178 

It can be seen in these tables that the errors are 
considerable and cannot be neglected. The main 
cause of this problem is the radial configuration of 
some parts of the network. In this case, the outage of 
one line can result in subnetworks without any 
generation (passive network). Therefore, the voltages 
of some buses are equal to zero. 

Training with these types of data increase the 
nonlinearity of the problem and the wrong estimation 
probability by ANN. 

This problem can be solved in a smart grid, which 
has sensors, like voltage transformers, for the 
detection of the outage of this type of transmission 
lines. 

IEEE 14-bus test system has only one line with this 
condition, which is the line between bus 7 and bus 8. 
If a sensor, which can detect the line outage, would 
be installed on this line, then the results could be 
changed, as given in Table-VI and Table-VII. 
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Table-VI: Maximum error of voltage magnitude estimation 
of unobservable buses in IEEE 14-Bus smart grid 

No. of  

installed PMUs 

Maximum  

Error % 

Average  

Error % 

4  0 0 

3  0.019 0.0035 

Table-VII: Maximum error of voltage phase estimation of 
unobservable buses in IEEE 14-Bus smart grid 

No. of  

installed PMUs 

Maximum  

Error % 

Average  

Error % 

4  0 0 

3  0.00054 7.93E-05 

5. Conclusion 
In this paper it has been shown that the reduction of 
installed PMUs and the application of ANNs for the 
estimation of unobservable buses increases errors in 
voltage magnitude and phase estimation, but 
decreases the cost of monitoring system. The system 
designer should find a trade-off between error and 
cost. 

The proposed algorithm has been applied to IEEE 14-
Bus test system. It is shown that for normal operation 
conditions, it is possible to reduce the number of 
installed PMUs, if there is an acceptable error range. 
But in case of single contingency, this solution does 
not have a good performance and the errors are 
unacceptable. By using voltage sensors, it is possible 
to change the test systems to smart grids. The 
voltages of unobservable buses of IEEE 14-Bus smart 
system can be estimated by ANNs with a good 
performance.  
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