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Abstract. The aim of this paper is to describe and evaluate a 

proposal for nowcasting wind speed for wind farm locations 

from historical time series, based on the method of regression 

by support vectors. To show the improvement over other 

methods, we used the ANEMOS Project standard evaluation 

protocol for forecasting against three reference models to 

compare, referred to a statistical approach: persistence, 

autoregressive and autoregressive moving average models. The 

obtained results show a good performance of the proposed 

method and how beat the classical reference models.      
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1. Introduction 
 

In last times, environmental, economic and geostrategic 

considerations have prompted the use of wind power as a 

renewable energy resource. The biggest challenge in 

integrating wind power into the electric grid is its 

intermittency. As a consequence of the presence of an 

increasing fraction of renewable energy into the electric 

grid, its influence has grown into the grid security, 

system operation, and market economics problems. 

Although wind energy may not be dispatched, the 

negative impact of wind energy onto the grid can be 

reduced if it can be scheduled using wind forecasting. So, 

the improvement of the wind power forecasting 

performance has significant impact on the system 

operation, obtaining as a consequence increasing wind 

power penetration without degradation in security or 

quality of service. 
 

Classification of wind forecasting methods can be 

organized by time-scale in the following categories [1] 

with its related main applications: 

 Very short-term forecasting: range from few seconds 

to 30 minutes ahead. Its main applications are in 

electric market clearing or regulation actions. 

 Short-term forecasting: range from 30 minutes to 6 

hours ahead. Its main applications are in economic 

load dispatch planning or load increment/decrement 

decisions. 

 Medium-term forecasting: range from 6 hours to 1 

day ahead. Its main applications are in generator 

online/offline decisions, operational security in day-

ahead or electric market. 

 Long-term forecasting: range from 1 day to 1 week 

ahead. Its main applications are in unit commitment 

decisions, reserve requirement decisions or 

maintenance scheduling to obtain optimal operating 

costs. 

These previous limits of forecasting terms are not 

strictly defined and some relaxation may be granted 

depending on the application of the prediction model. 

Other authors [2] define nowcasting to short lead time 

weather forecast and, particularly wind forecast. The US 

National Weather Service specifies that zero to three 

hours ahead forecasting is considered nowcasting. For 

other agencies, forecasts up to six hours are called 

nowcasting. 

 

The main wind power forecasting methods developed 

and reported in literature can be classified into the 

following approaches: 

 Persistence Approach, where it is assumed that wind 

speed at time t+k will be the same at time t. It is more 

accurate that most of another approaches for 

nowcasting, effective for very short-term and short-

term forecast. Hence, it is considered as a reference 

and so, it is used as a benchmark to check the 

improvements of new forecasting solutions [3]. 

 Statistical Approach, which is based on tuning the 

parameters of a model, training it with historical 

measurement data. In this approach, the difference 

between the predicted and the actual model allows to 

tune the parameters [4]. It includes time-series based 

models and neural network based methods. Most 

popular models of time-series approach are 

autorregresive moving average (ARMA) and 

variations (ARIMA, ARMAX, ARX, …). Neural 

network models can be feedforward networks, 

multilayer perceptrons, recurrent neural networks, 

radial basis function networks, etc. 

 Physical Approach, that uses a numerical model of 

the physical description of the atmosphere (Numerical 

Weather prediction, NWP). Usually wind speed is 

computed on a coarse grid by a weather service at 

mesoescale and transformed by downscaling at the 

location of wind farm [5] under forecasting. 

Customarily, NWP are run several times a day due to 

the difficulties and high costs associated to gain 

information in short-time. This limits its usefulness to 

long-term forecasts (greater than 6 hours ahead). 

Moreover, the most stable the weather conditions are, 

the most accurate the predictions are. 
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 Hybrid Approach or combination of different 

approaches such as mixing physical and statistical, 

short-term and medium term models, etc. These 

models can outperform each of them individually. 

 

This paper is oriented to a study of very short-time and 

short-time forecasting, under statistical approach using 

Support Vector Regression technique (SVR) and over 

time series of wind speed, in order to predict future 

values. To evaluate this technique, a comparative study 

with other methods related in literature using the standard 

proposed in [6] is included.  

The paper is organized from here in the following 

sections. It contains a Reference Methods section where 

the different prediction techniques, from a statistical 

point of view, utilized for the evaluation experiments are 

defined (specifically, there is a brief description of the 

persistence, autoregressive and autoregressive moving 

average models), and a Support Vector Regression 

section where the method is fully described. Results 

section shows the collected results of experiments 

achieved by using time series of wind speed, and finally, 

Conclusions section summarizes the main contributions 

and remarkable results. 

 

 

2. Reference Methods 
 

The experiments exposed in this paper are orientated to 

forecast speed wind in the southeast of Gran Canaria 

Island using methods related to regression process. These 

methods try to predict time series values in future k times 

ahead by a function that approximates its values thanks to 

historical training samples. They are discussed below. 

Previously we will present the models that will be used to 

evaluate comparatively the proposal based on SVR. 

       

Persistence is the simplest model for forecasting and it is 

known as Naive Predictor. It is based on the assumption 

of high inertia in the subjacent physical model. If y(t) is 

the value at time t of a time series, in persistence model 

the predicted value for k times ahead is 

𝑦  𝑡 + 𝑘 = 𝑦(𝑡) (1) 

It is considered a reference model hard to beat for short k 

values (reference). 

 

A predictive autoregressive method (AR) is simply a 

linear regression that tries to reconstruct time series 

supposing that the present value y(t) depends on recent 

past values y(t-i) and a random component (t) with zero 

mean and constant variance. Formally,   

𝑦 𝑡 = 𝑐 +  𝜑𝑖𝑦(𝑡 − 𝑖)

𝑝

𝑖=1

+ (𝑡) (2) 

where p is the order of the autoregressive model, φi the 

configuration parameters and c is a constant related with 

the process mean. The p order is identified by 

autocorrelation function (ACF) and partial 

autocorrelation function (PACF) using the Bayesian 

information criterion (BIC) and the Akaike information 

criterion (AIC) in a complementary form. An initial 

estimation of the φi parameters values is obtainable by 

means of the Yule Walker equations which can be further 

improved by recursive iteration [7].  

So, identified the order of model and parameters 

values, we can forecast the predicted value for a horizon 

time k by successive iterations from 𝑦  𝑡 + 1  to 𝑦 (𝑡 +
𝑘). 

𝑦  𝑡 + 𝑘 =  𝛼𝑖𝑦  𝑡 + 𝑘 − 𝑖 

𝑝

𝑖=1

 (3) 

By simplification, we have assumed a constant c equals 

to zero and the expectation of  (t). 

 

An improvement of an AR model was proposed by [8], it 

is called autoregressive moving average model (ARMA). 

The forecast in this model depends not only on the values 

it has had in the more or less recent past according to the 

autoregressive component, but it can also be a function of 

the residuals of past forecasts. The mathematical 

expression of the general ARMA(p, q) model that is in 

this case to the series is the following equation:    

𝑦 𝑡 = 𝑐 +  𝜑𝑖𝑦(𝑡 − 𝑖)

𝑝

𝑖=1

+  𝜃𝑖𝜀(𝑡 − 𝑖)

𝑝

𝑖=1

 (4) 

where p is the order and φi the parameters of the 

autoregressive component and, q and θi the order and the 

parameters of the moving average component, 

respectively.  

Briefly related, the construction of the model consists 

in identifying the p and q indices of the models, 

determining the φi and θi parameters contained in them, 

and finally validating them. The forecast is done the same 

way than AR model. 

𝑦  𝑡 + 𝑘 =  𝜑𝑖𝑦 (𝑡 + 𝑘 − 𝑖)

𝑝

𝑖=1

+  𝜃𝑖𝜀 (𝑡 + 𝑘 − 𝑖)

𝑝

𝑖=1

 (5) 

 

3. Support Vector Regression 
 

At this point, Regression using Support Vectors (SVR) is 

discussed. Support Vector (SV) [9] is firmly grounded in 

the framework of statistical learning theory or VC Theory 

(Vapnik-Chervonenkis Theory), developed over last 

fourth decades [10, 11, 12].  In a nutshell, VC theory 

characterizes properties of learning machines which 

enable them to generalize well to unseen data. In its 

present form, SV Machine was developed at AT&T 

Laboratories by Vapnik et al. and due to this industrial 

context, SV research has up to date a sound orientation 

towards real-world applications [13]. In regression and 

time series prediction applications, excellent 

performances were soon obtained [9, 14, 15, 16]. 

 

The goal in SVR is to find a function f(x) that has at most 

ε deviation from the set of targets yi (i=1,...l) for all the 

training data, and at the same time, is as flat as possible. 

Suppose we have a training set   𝑥1, 𝑦1 ,… ,  𝑥𝑙 , 𝑦𝑙  ⊂
Χ × ℝ where X denotes the space of the input patterns of 

dimension ℝ𝑛  and desire to approximate its values by a 

linear function 𝑓:𝑋 ⊆ ℝ𝑛 ⟶ℝ,  

𝑓 𝑥 =  𝑤 ∙ 𝑥 + 𝑏 = 𝑥𝑇𝑤 + 𝑏 =  𝑤𝑖𝑥𝑖

𝑛

𝑖=1

+ 𝑏 (6) 
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where  ∙  is the dot product in X, w the weights vector 

and b the bias. One way to obtain flatness, i.e, small w, in 

(6) is minimizing the Euclidean norm  𝑤2 . If we want 

to allow for some errors we can introduce slack variables 

𝜉𝑖 , 𝜉𝑖
∗ to cope with infeasible constraints of the 

optimization problem. Therefore we arrive at the 

formulation (7) that corresponds to dealing with a ε-

insensitive loss function, further described. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 
1

2
 𝑤 2 + 𝐶  𝜉𝑖 + 𝜉𝑖

∗ 

𝑙

𝑖=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  

 𝑦𝑖 −   𝑤 ∙ 𝑥𝑖 + 𝑏 ≤ 𝜀 + 𝜉𝑖
𝑦𝑖 −   𝑤 ∙ 𝑥𝑖 + 𝑏 ≥ −𝜀 − 𝜉𝑖

∗

𝜉𝑖 , 𝜉𝑖
∗ ≥ 0

 

 (7) 

The positive constant 𝐶 determines the trade off between 

the flatness of f and the amount up to which deviations 

larger than ε are tolerated.  

Finding a solution to the optimization problem is hard 

when training data is so large. The standard dualization 

method utilizing Lagrange multipliers solves it easier. 

The key idea is to construct a Lagrange function from 

both the objective function and the corresponding 

constraints, by introducing a dual set of variables 

denominated Lagrange multipliers. This technique yields 

the dual formulation of the optimization problem. 

Applying to the above case, the dual optimization 

problem is 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 

 
 
 

 
 
−

1

2
  𝛼𝑖 − 𝛼𝑖

∗  𝛼𝑗 − 𝛼𝑗
∗  𝑥𝑖 , 𝑥𝑗  

𝑙

𝑖 ,𝑗=1

−𝜀  𝛼𝑖 + 𝛼𝑖
∗ 

𝑙

𝑖=1

+  𝑦𝑖 𝛼𝑖 − 𝛼𝑖
∗ 

𝑙

𝑖=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  
  𝛼𝑖 − 𝛼𝑖

∗ 

𝑙

𝑖=1

= 0

𝛼𝑖 ,𝛼𝑖
∗ 𝜖  0,𝐶 

 

 (8) 

It is shown that 

𝑤 =   𝛼𝑖 − 𝛼𝑖
∗ 

𝑙

𝑖=1

𝑥𝑖  (9) 

therefore  

𝑓 𝑥 =   𝛼𝑖 − 𝛼𝑖
∗ 

𝑙

𝑖=1

 𝑥𝑖 , 𝑥 + 𝑏 (10) 

This is the so-called Support Vector expansion, i.e. w can 

be completely described as a linear combination of the 

training patterns xi. 

Computing b is done by exploiting the Karush-Kuhn-

Tucker conditions. This state that at the optimal solution 

the product between dual variables and constraints has to 

vanish. So, b can be computed as follows: 

b = 𝑦𝑖 −   𝑤 ∙ 𝑥𝑖 − 𝜀    𝑓𝑜𝑟 𝛼𝑖  𝜖  0,𝐶 

b = 𝑦𝑖 −   𝑤 ∙ 𝑥𝑖 + 𝜀    𝑓𝑜𝑟 𝛼𝑖
∗ 𝜖  0,𝐶 

 (11) 

It describes that only for  𝑓 𝑥𝑖 − 𝑦𝑖  ≥ 𝜀 the Lagrange 

multipliers may be nonzero and therefore we do not need 

all xi to describe w. The training samples that come with 

nonvanishing coefficients are denominated Support 

Vectors (SV).     

  Normally, the function f(x) that fits best to the 

training data is nonlinear, hence it is necessary a way to 

make the SV algorithm nonlinear. This could be achieved 

by a mapping Φ:𝑋 → ℱ that preprocesses the training 

patterns xi into a greater dimension feature space ℱ and 

then applying the standard SV regression algorithm. 

Therefore, our goal would transform in finding a function 

f(x) that satisfies 

𝑓 𝑥 =  𝑤𝑖

𝑛

𝑖=1

𝜙𝑖(𝑥) + 𝑏 (12) 

The main problem of this solution is that it becomes 

infeasible for both polynomial features of higher order 

and higher dimensionality. Properties of dual formulation 

may solve this inconvenience. 

If we apply the transformation 𝜙(𝑥) in (10), we 

obtain 

𝑓 𝑥 =   𝛼𝑖 − 𝛼𝑖
∗ 

𝑙

𝑖=1

 𝜙(𝑥𝑖),𝜙(𝑥) + 𝑏 (13) 

As noted, the SV algorithm only depends on dot products 

between the various patterns. Hence it suffices to know 

and use 𝑘 𝑥𝑖 , 𝑥 =  𝜙 𝑥𝑖 ,𝜙 𝑥   instead of  𝜙(⋅) 

explicitly. This allows to rewrite the Support Vector 

algorithm as follows: 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 

 
 
 

 
 
−

1

2
  𝛼𝑖 − 𝛼𝑖

∗  𝛼𝑗 − 𝛼𝑗
∗ 𝑘 𝑥𝑖 , 𝑥𝑗  

𝑙

𝑖 ,𝑗=1

−𝜀  𝛼𝑖 + 𝛼𝑖
∗ 

𝑙

𝑖=1

+  𝑦𝑖 𝛼𝑖 − 𝛼𝑖
∗ 

𝑙

𝑖=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  
  𝛼𝑖 − 𝛼𝑖

∗ 

𝑙

𝑖=1

= 0

𝛼𝑖 ,𝛼𝑖
∗ 𝜖  0,𝐶 

 

 (14) 

The function 𝑘 𝑥𝑖 , 𝑥  is denominated kernel function 

and must satisfies several conditions given by [17, 18, 

19]. Examples of them are shown below. 

 
Table 1. Examples of kernel function. 

 
Kernel Formulation 

Linear 𝐾 𝑥, 𝑧 =  𝐴𝑥 ⋅ 𝐴𝑧 = 𝑥𝑇𝐴𝑇𝐴𝑧 = 𝑥𝑇𝐵𝑧 

Polynomial 𝐾 𝑥, 𝑧 =   𝑥, 𝑧 + 𝑐 𝑑  

Radial base 

function (RBF) 𝐾 𝑥, 𝑧 = 𝑒
−
 𝑥−𝑧 2

𝜎2  

 

So far, we have solved the optimization problem 

when exist samples  𝑥𝑖 , 𝑦𝑖  with estimation errors  

𝑓 𝑥𝑖 − 𝑦𝑖  that follows a linear distribution. However, 

this distribution may vary depending the problem we 

meet. The concept of functional risk covers it.  

Consider a training data  𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑛  with a probability 

distribution 𝑃(𝑥, 𝑦). Our goal will be to find a function f 

that minimizes a risk functional 

𝑅 𝜔 =  𝐿 𝑦𝑖 , 𝑓 𝑥𝑖  𝑑𝑃(𝑥, 𝑦) (15) 

where 𝐿(𝑦𝑖 , 𝑓(𝑥𝑖)) denotes a cost function, or loss 

function, determining how we will penalize estimation 

errors. Given that the probability measure 𝑑𝑃(𝑥, 𝑦) is 

unknown, we can only use X for estimating a function f 

that minimizes 𝑅 𝜔 . An approximation consists in 

replacing the integration by the empirical estimate to get 

the empirical risk functional described as  
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𝑅𝑒𝑚𝑝  𝜔 =
𝜆

2
 𝜔 2 +

1

𝑛
 𝐿 𝑦𝑖 , 𝑓 𝑥𝑖  

𝑛

𝑖=1

 (16) 

The term  𝜔 2 controls the capacity, i.e., the 

generalization error and 𝜆 > 0 is a regularization 

constant. This empirical function is well-approximated to 

the risk functional if we choose the terms correctly. 

Hence, the equation (16) will be the new goal function of 

the optimization problem. Some of the most common 

loss functions are described in the table 2. 

  
Table 2. Examples of loss function. 

 
Loss function Formulation 

Quadratic 𝐿 𝑦, 𝑓 𝑥  = (𝑓 𝑥 − 𝑦)2 

Laplacian 𝐿 𝑦,𝑓 𝑥  =  𝑓 𝑥 − 𝑦  

Huber 𝐿 𝑦,𝑓 𝑥  =  

1

2
(𝑓 𝑥 − 𝑦)2     if  𝑓 𝑥 − 𝑦 < 𝜇 

𝜇  𝑓 𝑥 − 𝑦 −
𝜇2

2
   otherwise

  

ε-insensitive 𝐿 𝑦, 𝑓 𝑥  =  
0 if  𝑓 𝑥 − 𝑦 < 𝜀

 𝑓 𝑥 − 𝑦 − 𝜀 otherwise
  

 

To conclude this section, we expose a brief summary 

about steps to make a prediction using SV algorithm. 

   

Test Vector  X      

Output  Y = Σ (αi - αi*) K(Xi,X) + b      

Kernel  K(Xi,X)=‹Φ(Xi),Φ(X)›     

Support Vectors  X1,..Xn      X1 X2 Xn. . .

X

Φ(X1) Φ(X2) Φ(Xn). . . Φ(X)

‹ ∙ › ‹ ∙ › ‹ ∙ ›. . .

Σ

α1 - α1* αn - αn*

 
Figure 1. Prediction by SV algorithm.  

 

The pattern for which a prediction is made X is mapped 

into a feature space by a map Φ. Then dot products are 

computed with the training patterns Xi under the map Φ. 

This corresponds to evaluating the kernel k function at 

location k(xi,x). Finally the dot products are added up 

using the weigths αi - αi*. This, plus the constant term b 

yields the final prediction output.  

 

4. Results 
 

We have used a wind data series acquired in Pozo 

Izquierdo, Gran Canaria Island (Spain). The wind speed 

series comprise about 20 weeks data from a 

meteorological tower in time steps of one minute and 

were obtained at 20 meters high. It corresponds to 

203305 samples measured in meters per second. The data 

set was split in two subsets: train and test. The training 

data is a 60% (121983 samples) of the global data.  

About time windows utilized in the experiments, we 

forecasted for a 10, 15, 30, 60, 90, 120, 180 and 240 

minutes horizon time. To evaluate the forecasting 

performance it was used the standard protocol suggested 

by [6]. It includes the definition of the Evaluation Criteria 

(EC): BIAS, MAE, RMSE and SDE, and also the 

improvement over a reference model which is computed 

in percent value as: 

𝐼𝑚𝑝𝑟𝑒𝑓 ,𝐸𝐶 % = 100
𝐸𝐶𝑟𝑒𝑓 − 𝐸𝐶

𝐸𝐶𝑟𝑒𝑓
 (17) 

The reference model chosen for this improvement 

measure was the persistence one. Remark that the values 

of BIAS and MAE are related to the first moment of the 

error, therefore related to the wind speed, but the values 

of RMSE and SDE are related to the second order 

moment and the variance of the error.  

The System Identification Toolbox of MatLab
®
 

software was used to estimate and evaluate the optimal 

parameters of the AR and ARMA models. It also 

includes several procedures to calculate ACF, PACF, 

discrete Fourier transform (DFT) and cumulative 

periodograms, needed to tune the different orders of 

models. In the case of SVR, we utilized the libsvm 

software [20] to obtain the support vectors and predict. 

To estimate the optimal configuration parameters in this 

model, a brief technical optimization study was 

performed using genetic algorithms provided by the 

Optimization Toolbox. The output of this process 

indicated that the least EC value for a 10 minutes time 

horizon was achieved with the configuration parameters 

given by table 3. 

 
Table 3. Configuration parameters of SVR. 

 
Parameter Value 

Dimension of input space 60 

Loss function 
ε-sensitive 

ε = 0.1 

Kernel function 
RBF 

σ = 30.151 

Regularization constant λ = 5.001 

 

The results of EC criteria for each proposed method and 

time horizon and the relative improvements respect the 

persistence model are shown in the following tables.    

 
Table 4. Comparative results for 10 minutes ahead prediction. 

 
 Persist. AR ARMA SVR 

BIAS -0.00163 -0.07857 -0.05333 -0.02817 

MAE 0.80383 0.75261 0.75079 0.71811 

RMSE 1.10785 1.02271 1.02022 0.99028 

SDE 1.10785 1.01969 1.01883 0.98989 

 Imp_MAE 6.372 % 6.598 % 10.664 % 

 Imp_RMSE 7.685 % 7.910 % 10.612 % 

 Imp_SDE 7.958 % 8.035 % 10.648 % 

 
Table 5. Comparative results for 15 minutes ahead prediction. 

 
 Persist. AR ARMA SVR 

BIAS -0.00247 -0.10269 -0.07382 -0.03294 

MAE 0.87065 0.82669 0.82428 0.78572 

RMSE 1.19542 1.11893 1.11588 1.08101 

SDE 1.19543 1.11422 1.11344 1.08051 

 Imp_MAE 5.049 % 5.326 % 9.755 % 

 Imp_RMSE 6.399 % 6.654 % 9.571 % 

 Imp_SDE 6.793 % 6.859 % 9.613 % 
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Table 6. Comparative results for 30 minutes ahead prediction. 

 
 Persist. AR ARMA SVR 

BIAS -0.00539 -0.14625 -0.10151 -0.06807 

MAE 1.01350 0.98882 0.98352 0.93065 

RMSE 1.39477 1.33291 1.32303 1.28518 

SDE 1.39477 1.32487 1.31914 1.28339 

 Imp_MAE 2.435 % 2.958 % 8.175 % 

 Imp_RMSE 4.435 % 5.144 % 7.857 % 

 Imp_SDE 5.012 % 5.422 % 7.986 % 

 
Table 7. Comparative results for 60 minutes ahead prediction. 

 
 Persist. AR ARMA SVR 

BIAS -0.01125 -0.23753 -0.16622 -0.13874 

MAE 1.20762 1.22497 1.21057 1.14396 

RMSE 1.65428 1.62842 1.60624 1.56797 

SDE 1.65425 1.61101 1.59763 1.56183 

 Imp_MAE -1.437 % -0.244 % 5.272 % 

 Imp_RMSE 1.563 % 2.904 % 5.217 % 

 Imp_SDE 2.614 % 3.423 % 5.587 % 

 
Table 8. Comparative results for 90 minutes ahead prediction. 

 
 Persist. AR ARMA SVR 

BIAS -0.01642 -0.28582 -0.22964 -0.20055 

MAE 1.37970 1.40750 1.39021 1.33294 

RMSE 1.88036 1.84867 1.82693 1.82098 

SDE 1.88030 1.82646 1.81245 1.80991 

 Imp_MAE -2.015 % -0.762 % 3.389 % 

 Imp_RMSE 1.685 % 2.841 % 3.158 % 

 Imp_SDE 2.863 % 3.608 % 3.744 % 

 
Table 9. Comparative results for 120 minutes ahead prediction. 

 
 Persist. AR ARMA SVR 

BIAS -0.02120 -0.29865 -0.25748 -0.26970 

MAE 1.53890 1.55273 1.53520 1.49954 

RMSE 2.09242 2.02520 2.00925 2.04282 

SDE 2.09232 2.00307 1.99270 2.02495 

 Imp_MAE -0.899 % 0.240 % 2.558 % 

 Imp_RMSE 3.213 % 3.975 % 2.370 % 

 Imp_SDE 4.266 % 4.761 % 3.220 % 

 
Table 10. Comparative results for 180 minutes ahead 

prediction. 

 
 Persist. AR ARMA SVR 

BIAS -0.03046 -0.42464 -0.32271 -0.37906 

MAE 1.78897 1.74479 1.74321 1.73844 

RMSE 2.41498 2.25451 2.25064 2.34139 

SDE 2.41481 2.21417 2.22740 2.31052 

 Imp_MAE 2.470 % 2.558 % 2.825 % 

 Imp_RMSE 6.645 % 6.805 % 3.047 % 

 Imp_SDE 8.309 % 7.761 % 4.319 % 

 
Table 11. Comparative results for 240 minutes ahead 

prediction. 

 
 Persist. AR ARMA SVR 

BIAS -0.04072 -0.51830 -0.50998 -0.44665 

MAE 1.99938 1.90018 1.89221 1.94194 

RMSE 2.65418 2.43315 2.42800 2.56516 

SDE 2.65389 2.37733 2.37385 2.52599 

 Imp_MAE 4.962 % 5.360 % 2.873 % 

 Imp_RMSE 8.328 % 8.522 % 3.354 % 

 Imp_SDE 10.421 % 10.552 % 4.819 % 

 

All tested methods perform worse on BIAS values 

such as increase the level in relation to the persistence 

model. Moreover, the greater the time horizon is; the 

greater the difference of this error between each method 

and the persistence one is.  

However, in MAE, RMSE and SDE criteria the 

persistence value is beaten by all methods. For short time 

window, the SVR method presents better results but not 

for longer time. It is due, as we comment before, to the 

fact that the SVR parameters were fixed by genetic 

algorithm for 10 min. horizon and after used, for all 

horizons from 10 to 240 min. In this last case, ARMA 

method performs the smallest errors values. 

 

Remark that differences between MAE values are greater 

for short time window whereas in the case of RMSE 

values are greater for the greatest time horizons. The 

reason is that RMSE value is related to variance of 

prediction error and the greater time horizon is, the 

greater this error is.   

 

 
 

Figure 2. Comparative of MAEs and RMSEs between methods. 

 

Note that the improvement of the autorregresive 

methods (AR and ARMA) regarding to persistence 

model is not always positive. For a time window between 

60 and 90 minutes, the MAE value of persistence is 

smaller; however, its RMSE value is greater. This is due 

to the properties of autorregresive models that consider a 

constant variance of forecasting error. 

 

Although in the previous experiments ARMA model 

performed better results than SVR in time horizon greater 

than 120 minutes, this statement is not completely true 

because SVR was fitted for a very short time forecast. 

The table 12 shows the results for a SVR method fitted to 

a 240 minutes time horizon prediction. Hence, also in this 

case, SVR performs better EC than ARMA model.    

 
Table 12. SVR improvement for 240 minutes ahead prediction. 

 
 Persist. ARMA SVR 

BIAS -0.04072 -0.50998 -0.57606 

MAE 1.99938 1.89221 1.88426 

RMSE 2.65418 2.42800 2.40935 
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SDE 2.65389 2.37385 2.33948 

 Imp_MAE 5.360 % 5.758 % 

 Imp_RMSE 8.522 % 9.224 % 

 Imp_SDE 10.552 % 11.847 % 

 

5. Conclusions 
 

The use of SVR method has been proposed in this paper 

to predict wind speed time series, and then, have been 

experimentally compared with the obtained data by the 

reference models described above. 

This study has used a standard protocol to evaluate 

the performance of forecasting procedures that some 

authors have introduced. We have compared the results 

according this protocol. We have shown that SVR 

method perform better evaluation criteria than other 

reference models.  

Moreover, we have shown that SVR exhibit a good 

performance, beating Persistence, AR, and ARMA 

Predictors for different time horizons. It is also a flexible 

method able to be trained for obtaining predictions 

adapted to different time horizons ahead. This property 

would be useful in building a forecasting system fitted to 

final user needs, i.e. able to predict for different time 

horizon as shown in figure 3, tuning by learning the 

parameters of different SVR predictors for different time 

horizons. 

 

SVR-10m.

SVR-60m.

SVR-120m.

SVR-240m. ŷ(t+240)

y(t)

ŷ(t+120)

ŷ(t+60)

ŷ(t+10)

 
 

Figure 3. Forecasting system by different fitted SVR methods. 
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