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Abstract. In this paper, an original non sequential Monte 

Carlo simulation tool is developed. This tool permits to 

compute the optimal dispatch of classical (coal, oil,…) thermal 

generation in order to minimize polluting gases (NOx, CO2,…) 

emissions in presence of wind power and under constraints like 

the maximal generation cost or the ability of the electrical 

system to cover the load. In comparison with existing analytical 

tools based on restrictive hypotheses when it comes to wind 

power modelling (generally represented by a single entirely 

correlated global wind park), unexpected outages of 

conventional parks or fluctuating representation of the load, the 

use of Monte Carlo simulation allows to remove all those 

limitations. Indeed, thanks to the developed tool, the optimal 

dispatch of classical thermal generation can be reached under 

several load conditions. Well-known reliability indices can also 

be computed and moreover, following the wind speed sampling 

that is used, entirely correlated, independent or more accurate 

correlation level between wind parks can be considered. 

Finally, it is thought that the proposed solution can be a useful 

tool for electrical system operators in order to dispatch the 

polluting thermal units under cost, reliability, emissions, 

fluctuating wind power and unexpected outages constraints.     
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1. Introduction 

 
Nowadays, most of the conventional electrical parks are 

still using fossil resources like coal or oil. Those primary 

resources involve the emission of gaseous pollutants such 

as carbon oxides (COx) or oxides of nitrogen (NOx). 

Recently, following the Kyoto agreements, a great 

research effort has been made in order to reduce those 

emissions worldwide. In this context, one of the most 

promising alternative resources is certainly wind power. 

Given the fluctuating behaviour of the wind and due to 

several operating constraints (cost, reliability,…) related 

to electrical systems, it is important to adequately 

dispatch conventional thermal generation in order to 

guarantee a minimization of the gaseous pollutants 

emissions and to simultaneously face the requirements of 

modern networks. In that way, references [1] and [2] 

have proposed analytical models in order to minimize 

emissions under cost and load covering constraints. 

However, even if they represent a first approach, those 

models are limited by several hypotheses. For example, it 

can be quoted that the hourly load fluctuations cannot be 

analytically taken into account and that the computations 

are therefore made for a single load value. Moreover, 

investigated correlation scenarios between wind parks are 

relatively limited with the analytical approach and wind 

generation is generally supposed to be entirely correlated 

over the studied territory. Finally, as only one single load 

value is considered, it is not possible to compute 

reliability indices like the Loss of Load Probability 

(LOLP) or the Loss of Load Expectation (LOLE) [3]-[4] 

with the existing analytical tools. In order to avoid the 

drawbacks of the analytical approach, it is therefore 

proposed in this paper to develop a non sequential Monte 

Carlo simulation tool [5]-[6] that permits to consider a 

load fluctuating behaviour but also several correlation 

scenarios between wind parks. Thanks to the developed 

tool, an optimal dispatch of the classical thermal 

generation can be realized for each generated system 

state, reliability indices can be evaluated and wind 

generation long term impact on gaseous pollutants 

emissions can be studied. Concerning this last point, it is 

important to note that the simulated states are 

independent steady-state ones and that, therefore, short 

term transitions between system states cannot be studied 
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here. By consequence, the eventual increase of CO2 

emissions due to the fast starting of coal thermal units in 

case of unexpected lack of wind is beyond the scope of 

the present study. Nevertheless, in order to prove the 

utility of the developed simulation tool for the system 

operators from the long term electrical dispatch point of 

view, it has been applied to a slightly modified version of 

the Roy Billinton Test System (RBTS) [7]. 

Finally, the present paper is organized as follows. In a 

first section, the general algorithm of the developed 

Monte Carlo simulation tool is presented. Then, the 

optimization model solved during each generated state of 

the simulation is described. In a third part, some 

simulation results and applications of the developed tool 

are proposed in order to show its usefulness. Finally, a 

conclusion pointing out the main interests of the present 

work is proposed.     

 

2.  General algorithm of the developed 

Monte Carlo simulation tool  
 

Monte Carlo simulations are generally used to simulate 

the actual process and random behaviour of a given 

electrical system. The pursued objectives are, for 

example, the computation of reliability indices, the 

search for profitable investments scenarios, and so on [4], 

[6]… Theoretically, there are two basic techniques used 

when Monte Carlo methods are considered for power 

system applications, these methods being known as the 

sequential and non sequential techniques [6], [8]. In that 

way, in the present study, a non sequential Monte Carlo 

algorithm (figure 1) has been developed under Matlab® 

to evaluate reliability indices of interest, gaseous 

pollutants mean emissions, adequate dispatch of classical 

units,... This algorithm is only limited to hierarchical 

level HLI [4]. It means that the total system generation is 

examined with the total system load requirement on a 

pooled basis. Moreover, the transmission system and its 

ability to move the generated energy towards the 

consumer is ignored in a HLI study.   

The developed Monte Carlo simulation could 

theoretically incorporate any number of system 

parameters and states but it has been assumed in our 

calculation that a classical generation unit was only able 

to reside in one of the following two states: fully 

available and unavailable. Moreover, in the established 

non sequential simulation, only hourly uncorrelated states 

are considered as it is supposed that a generation unit 

outage state does not condition or influence its state 

during the next or previous hours of simulation (and 

inversely). Consequently, at the start of each hour, a 

uniformly distributed random number (u) on the interval 

[0,1] is sampled for each classical (thermal, 

hydroelectric,…) generation unit in order to decide its 

operation state, using the following process:          
 

 If u ≤ Forced Outage Rate (FOR) [4], the 

classical unit is decided to be unavailable; 

 If u > FOR, the classical unit is decided to be 

fully available; 

 

Concerning the hourly load of the system, its 

determination in a non sequential algorithm can be 

practically based on a random sampling over its 

cumulative distribution function [5] or, more precisely, 

established by the use of modulation diagrams of the 

annual peak load value [9]: 

 

 Diagram of weekly modulation of the annual peak 

load: this last one permits to calculate the peak load 

of the current week on the basis of the annual peak 

load value. This diagram contains thus 52 modulation 

rates of the annual peak load value; 

 Diagram of the hourly modulation of the weekly peak 

load: it permits to calculate the hourly load for each 

hour of the week. This diagram contains thus 24 

modulation rates of the weekly peak load value.  

 

Using this last methodology, no random sampling is 

needed in order to generate the hourly load of the system. 

More easily, the program just considers, in the weekly 

modulation diagram, the rate corresponding to the current 

week during the simulation process (figure 1). Then, it 

associates to the generated weekly peak load the rate of 

the hourly modulation diagram corresponding to the 

investigated hour of the day. Also note that, as the 

consumption during one week can change from one day 

to the other (days of the week, Saturday or Sunday), 

several diagrams of hourly modulation can be defined 

during one week. Moreover, seasonal aspects can also be 

taken into account by defining periods during the year 

and by changing the set of hourly modulation diagrams 

associated to the load from one period to the other. 

From the wind generation point of view, several 

modeling methods like the ones based on Auto-

Regressive Moving Average models have already been 

proposed in the literature and require increased 

computing capacities [10]. Here, as we consider a non 

sequential approach, it is not necessary to establish such a 

complex chronological model for wind speeds but it will 

be more efficient to introduce a random sampling based 

on a defined statistical distribution [5], [9] associated to 

each wind park. Practically, the non sequential wind 

speed sampling is generally based on a direct inversion of 

the Cumulative Distribution Function [5], [9]. More 

precisely, the process can be described as follows: 

 

 Sampling of an uniformly distributed number ‘u’ 

on the interval [0, 1];  

 Application of that sampled random number ‘u’ 

to the Cumulative Distribution Function in order 

to determine the associated wind speed.  

 

Given the expected wind correlation scenario, the same 

random number ‘u’ can be sampled for all the wind 

parks. In that case, they are all supposed to be entirely 

correlated. At the opposite, the parks can be entirely 

independent by sampling an independent random number 

‘u’ for each of them. Otherwise, more accurate 

correlation scenarios can be reached by combining for 

each wind park an adequately computed noise with a 

single mean distribution [11]. Finally, note that a power 

curve is associated to each wind park and permits to 
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convert the sampled wind speed into generated power. 

 
Fig.1. Algorithm of the developed Monte Carlo simulation tool 

 

At the end of the system states generation process, 

reliability indices like the LOLP and the LOLE [3]-[4] 

can be computed based on the simulated states during 

which the hourly load cannot be fully covered with the 

available (classical + wind) generation. 

Moreover, during the Monte Carlo process, each 

generated system state must be analyzed in order to 

minimize (under cost and load covering constraints) the 

gaseous pollutants emissions by adequately dispatching 

the available (classical + wind) generation. In that way, 

the implemented optimization model is presented in 

section 3. 

 

3.  Optimization model to be solved during 

each generated system state  
 

Before presenting the optimization model developed in 

this section, it is important to note that only coal and oil 

thermal units, hydroelectric generation and wind parks 

are considered in this paper. Nevertheless, the proposed 

model could be easily extended to other kinds of 

production means like nuclear units 

The optimization model presented in this section tends to 

minimize NOx emissions under cost and load covering 

constraints. In that way, the pursued objective is based on 

the definition of an Environmental Impact Index (EII) 

expressed in tons per hour. The contribution of classical 

thermal (coal or oil) units to this index can be defined 

like in references [1] and [2]: 

 

 ttt xaaxaxaaEII  43

2

210 exp       (1) 

 

where, xt is the generated power (expressed in per unit) 

of the considered classical thermal (oil, coal,…) unit and 

ai (i=1,…,4) are empirical coefficients related to this unit. 

Note that one of the main characteristics of the EII index 

comes from its U-shape in function of the generated 

thermal power. 

Finally, note that hydroelectric and wind generation units 

can be approximated as zero emission units [12] and do 

therefore not have any contribution to the EII. 

From the cost C ($/h) point of view, it is based on a 

strictly growing evolution in function of the generated 

power [13]. In that way, the cost associated to classical 

thermal units Ct ($/h) is generally characterized by a fuel 

cost square function of the generated power [13] and a 

starting investment cost quite limited in comparison with 

large hydroelectric units [14]: 

 
2

210 tttttt xqxqqC                     (2) 

 

where, xt is again the generated power (expressed in per 

unit) of the thermal unit and qti are empirical coefficients 

related to this unit. 

Concerning the hydroelectric parks cost Ch ($/h), as 

already mentioned, the starting investment cost is 

generally quite high and the operating cost is quite 

reduced (as the fuel cost is zero). The latter is mainly due 

to maintenance activities and is practically modelled by a 

linear evolution depending of the generated power [14]: 

 

hhhh xqqC  10       (3) 

 

where, xh is the generated power (expressed in per unit) 

of the hydroelectric unit and qhi are empirical coefficients 

related to this unit. 

From the wind power point of view, given the multiple 

encouraging governmental policies in many countries, it 

has to be considered as a must run zero cost (Cw = 0) 

generation unit in the proposed tool. Indeed, thanks to 

this hypothesis, wind power will be considered before 

classical units in order to cover the load and will be in 

agreement with the reality [15]. 

Practically, in order to express the cost constraint, a 

maximal hourly cost is defined [1]-[2] and the constraint 

is defined as: 

 

max

111

CCCC
wth n

i

wi

n

i

ti

n

i

hi  


    (4) 

 

where, nw, nt and nh are respectively the number of 

installed wind, thermal and hydroelectric units. Cmax is 

the maximal cost fixed for the hourly electrical 

generation.  

The load constraint associated to the optimization 

problem consists in exactly covering the load with the 

optimally dispatched classical and wind generation units. 

This constraint can thus be written as: 
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where, Poptwi, Poptti and Popthi are respectively the hourly 

optimal generation of wind, thermal and hydroelectric 

units. In the same way, Pd represents the hourly load 

demand. 

Using expressions (1), (4) and (5), the minimization 

model of NOx emissions under cost and load covering 

constraints can be expressed as: 

 

Min   
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                          (8) 

 

For efficiency and security reasons, each classical unit 

must also be constrained by lower (xmin,i) and upper 

(xmax,i) boundary values: 

 

iii xxx max,min,      (i=1,2,…,nc)                              (9)  

 

where, nc is the total number of classical units (nc = nt + 

nh). 

The developed optimization model is thus characterized 

by an objective function and constraints derivable and 

continuous in each point. Consequently, the optimal 

solution associated to each generated system state is 

calculated by use of the fmincon solver from the Matlab® 

Optimization Toolbox. This optimizer provides local 

optimization based on a gradient descent algorithm and 

can thus be limited in the case of problems with multiple 

local optima. However, the objective function (6) is 

always characterized by a single optimum and is thus 

perfectly suited for the application of the fmincon solver. 

Finally, note that this solver can also handle several types 

of constraints (linear or non-linear, equality, 

inequality,…).   

 

4.  Calculated indices and useful results 

provided by the Monte Carlo simulation 

tool  
 

4.A. Calculated reliability indices 

 

In the Monte Carlo Simulation tool, the power system is 

thus modeled by specifying a set of ‘events’, where an 

event is a random occurrence that changes the system 

state. In the present study, the events recognized by the 

established program are the changes in load, the possible 

failure of a generating unit or the variation of the power 

produced by a wind park. Each simulated system state is 

then defined in terms of available margin, which is the 

difference between the available (classical + wind) 

generation capacity and the load. In order to proceed to 

this step, the total available system capacity must be 

superimposed on the load during each simulated hour to 

define: 
 

 Healthy state: The total available capacity is 

greater than the corresponding hourly load; 

 Risky state: The total available capacity is less 

than the corresponding hourly load value.     
 

Two complementary indices among which the LOLP [3]-

[4] are then defined as: 
 

Probability of health =
 
8760

)(



N

Hn
HP                          (10) 

Probability of risk (LOLP) =
 
8760

)(



N

Rn
RP                    (11) 

 

where, n(H) and n(R) are respectively the total number of 

hourly healthy and risky simulated states; N being the 

total amount of simulated years.  

The number of hours per year during which the available 

total (classical + wind) generation cannot meet the load is 

defined as the Loss of Load Expectation (LOLE) index 

and is obtained by multiplying the LOLP index with the 

annual number of hours (8760 hours per year). 

 

4.B. Optimization results 

 

Risky states cannot be optimized as the available 

generation is lower than the load. Consequently, the load 

constraint (8) cannot be met during those states. An 

indicator of risky states has thus been defined and set to 1 

when such a state is simulated. Moreover, during a risky 

state, all the available generation has to operate at its 

maximal point in order to face the lack of production. 

During healthy states, the previous indicator is set to 0 

and it is worth to solve the optimization problem. In that 

way, in some healthy cases, the cost constraint cannot be 

met with the available generation and the load can thus 

not be fully covered with an adequate cost. Such cases 

are also characterized by another indicator set to 1 when 

the maximal cost constraint is violated. Healthy states 

presenting an optimized solution that verifies both load 

and cost constraints have both indicators set to 0. 

Moreover, thanks to the Monte Carlo environment, a 

focus can be made on the optimal configuration of each 

of those healthy states. This property of the developed 

tool could be useful for the electrical system operator in 

order to adequately dispatch the generation park when 

gaseous pollutants emissions are taken into account. 

Finally, at the end of the simulation, a mean EII index 

can be computed and permits, for example, to quantify 

the impact of wind power on the reduction of gaseous 

pollutants emissions.    

 

5.  Simulation results on a modified RBTS 

test system  
  

In order to test the developed Monte Carlo simulation 

tool, a slightly modified version of the academic RBTS 

test system has been considered. In its initial version [7], 

the RBTS was consisting of 7 hydroelectric units and 4 

classical thermal parks. Unfortunately, wind generation 
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was not taken into account in that version of the RBTS. 

In order to introduce that renewable energy into the Roy 

Billinton Test System, reference [16] has consequently 

proposed the addition of wind power based on Weibull 

statistical distributions in the context of HLI adequacy 

studies. In the present paper, two wind parks with an 

installed capacity of 2 p.u., each, are considered. Both are 

subject to Weibull distributions with scale (A) and shape 

(B) parameters being respectively (A = 10.81 ; B = 1.41) 

and (A = 11.25 ; B = 1.20) [17]. Wind power is finally 

obtained by use of a variable speed classical power curve 

for each park [18]. In order to keep a sufficient number of 

simulated risky states and to test our simulation tool in 

every condition, the annual peak load value of the RBTS 

has been increased by 3.5 p.u. (annual peak load value = 

22 p.u.) jointly to the introduction of wind generation. 

This new load value is afterwards modulated by use of 

the Belgian hourly and weekly modulation rates [9]. 

Finally, the empirical emission coefficients aij (j = 0,…,4) 

associated to each thermal unit ‘i’ are extracted from 

references [1]-[2] and are listed in table 1. 

 
Table 1 – Empirical emission coefficients associated to 

classical thermal units 
 ai0 ai1 ai2 ai3 ai4 

Thermal 

unit 1 

0.04091 -0.05554 0.0649 0.0002 2.857 

Thermal 
unit 2 

0.02543 -0.06047 0.05638 0.0005 3.333 

Thermal 

unit 3 

0.04258 -0.05094 0.04586 0.000001 2.857 

Thermal 
unit 4 

0.05326 -0.0355 0.0338 0.002 2 

 

In the same way, the empirical cost coefficients 

associated to thermal and hydroelectric parks are taken 

from references [1], [2] and [14] and are respectively 

summarized in tables 2 and 3: 

 
Table 2 – Empirical cost coefficients associated to classical 

thermal units 
 qt0 qt1 qt2 

Thermal unit 1 10 200 100 

Thermal unit 2 10 150 120 

Thermal unit 3 20 180 40 

Thermal unit 4 10 100 60 

 
Table 3 – Empirical cost coefficients associated to hydroelectric 

units 
 qh0 qh1 

Hydrolectric 1 30 50 

Hydrolectric 2 30 65 

Hydrolectric 3 35 35 

Hydrolectric 4 25 40 

Hydrolectric 5 25 50 

Hydrolectric 6 20 60 

Hydrolectric 7 15 40 

 

Finally, note that the installed classical (thermal + 

hydroelectric) generation capacity is reaching 24 p.u. in 

our development and that the number of simulated 

system states is defined such as a 10
-4

 accuracy can be 

reached on the computed indices. 

 

 

 

5.A. Results collected with the developed simulation tool 

for the modified RBTS with independent wind parks 

 

In a first simulation, both wind parks are supposed to be 

entirely independent and the obtained results are shown 

for one week in figures 2.a and b, 3 and 4. 
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(b) 

Fig.2. Optimal fitting of the fluctuating load with wind and 

classical generation for one week (a) ; zoom on one day (b) 

 

It can be clearly observed in figure 2 that the optimal 

solution from the gaseous pollutants emissions point of 

view adequatly follows the load. However, in some cases 

like the one that can be pointed out during hour 14, the 

available « classical + wind » generation is greater than 

the load but the optimally dispatched « classical + wind » 

generation stays below the load. This result can be 

explained by looking at figure 3. Indeed, it is due to the 

fact that the cost constraint (Cmax = 3000 $/h) cannot be 

faced with the available generation and the load that has 

to be covered.   
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The indicator of loss of load states and the hourly EII 

indices can also be plotted thanks to the developped tool. 

Both indicators are proposed in figure 4 and it can be 

easily concluded that no LOLP states are to be seen 

during the considered week (LOLP indicator always 

equal to 0). 
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Fig.4. Environmental Impact Index (black cross) and LOLP 

state indicator (red star) during one simulated week 

 

Finally, at the end of the simulation, the LOLP, LOLE (in 

hours/years) and mean EII (in tons/hour) are computed 

by the software and are displayed on the Matlab® 

workspace. 

 

5.B. Impact of the wind generation on the collected 

reliability (LOLP, LOLE) and emission (mean EII) 

indices 

 

Thanks to the developed simulation tool, it is possible to 

quantify the impact of wind generation on the electrical 

system adequacy and on gaseous pollutants emissions. In 

that way, the same wind parks as the ones defined in the 

introduction of section 5 have been considered and the 

installed wind capacity has been increased from 4 p.u. (2 

p.u. at each wind park) to 8 p.u. (4 p.u. at each wind 

park). Moreover, in order to also quantify the impact of 

wind correlation on the obtained simulation results, two 

extreme scenarios have been computed: on the one side, 

both wind parks have been supposed to be entirely 

correlated and, on the other side, the same wind parks 

have been considered as entirely independent. Finally, 

note that all the simulations have been realized with the 

same unchanged load and classical generation 

characteristics as the ones detailed for the modified 

RBTS. 

 
Table 4. Impact of wind correlation and installed capacity on 

the electrical system adequacy and gaseous pollutants emissions 

(E C = Entirely correlated ; I = Independent)  
Installed 

wind 

capacity 

(p.u.) 

LOLP LOLE (h/year) Mean EII 

(tons/year) 

 E C I  E C I  E C I 

4  0.0026 0.0021 22.93 17.95 0.2012 0.1959 

6 0.0022 0.0015 

 

19.44 13.14 0.1939 0.1843 

8 0.0017 0.0013 14.95 10.97 0.1834 0.1745 

  

Based on table 4, it can be easily observed that the 

increase of wind penetration (entirely correlated or not) is 

improving both emissions and reliability indices. This 

result is quite logical as the load and classical generation 

characteristics are not changed while the installed wind 

capacity is increased. Therefore, as wind generation is 

considered as a zero cost non polluting generation mean, 

it will be preferentially used to cover the load and will 

consequently decrease the gaseous pollutants emissions. 

Moreover, as the load is not changed, the increase of 

wind penetration increases also the installed total (wind + 

classical) generation capacity and tends thus to decrease 

the risk of facing states of load non recovering. 

On the other side, when the correlation between wind 

parks is analyzed, it can be seen that the power 

smoothing implied by the independence scenario between 

wind parks (an important production for one wind park 

does not necessarily involve a consequent production for 

the other as the parks are supposed to be independent) 

tends to reduce the risk of load non recovering and leads 

to reduced gaseous pollutants emissions in comparison 

with the “entire correlation” scenario. Indeed, when wind 

parks are entirely correlated, the simulated wind power is 

much more fluctuant. Therefore, in some states during 

which the available wind generation is very law (for all 

the wind parks due to the entire correlation between 

them), the risk of not being able to cover the load is 

increased and much more classical thermal generation is 

needed with, as a consequence, an increase of the 

gaseous pollutants emissions.     

 

6. Conclusions  
  

In this paper, an original Monte Carlo simulation tool has 

been developed in order to optimally dispatch, from the 

gaseous pollutants emissions point of view, thermal 

generation under load covering and cost constraints. With 

the developed tool, the random behaviour of wind 

generation and of the hourly load can also be taken into 

account and represents therefore a consequent 

improvement in comparison with the quite limited 

existing analytical approach. Moreover, thanks to the 

proposed software, the long term impact of wind 

generation on the electrical system adequacy and on 

gaseous pollutants emissions can be evaluated in 

different wind correlation scenarios and allows thus to 

better quantify the real influence of wind generation. 

Finally, it is thought that the developed tool could be a 

great help for electrical system operators in order to 

adequately dispatch the available classical thermal 

generation in presence of wind power and under 

reliability, cost and minimized gaseous pollutants 

emissions constraints. 
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