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components of the solution are optimal trajectory and optimal
Abstract—This research represents a thermodynamic approachaontrol. In purely thermal systems (those without chemical
modeling and power optimization of energy converters, such likhanges) the trajectory is characterized by temperature of the
thermal, ~ solar, chemical and electrochemical enginegesource fluidT(t), whereas the control is Carnot temperature
Thermodynamics qud_s to convgrter’s efficiency and limitingr t) defined in our previous work [1, 2]. For chemical
generated power. Efficiency equations serve to solve problemssgfstemS also chemical potential(ajt) plays a role.

upgrading and downgrading of resources. Real work yield is , .
cumulative effect obtained in a system of a resource fluid, engines'/heneverT'(t) and 4 (t) differ from T(t) and /(1) the

and an infinite bath. While optimization of steady systems requiré§source relaxes with a finite rate, and with an efficiency
using of differential calculus and Lagrange multipliers, dynamitector different from the perfect efficiency. Only whEr=T
optimization needs variational calculus and dynamic programmingnd /= wthe efficiency is perfect, but this corresponds with
The primary result of the static optimization is the limiting poweran infinitely slow relaxation rate of the resource to the
whereas that of dynamic optimization is a finite-rate counterpart %ermodynamic equilibrium with the environmental fluid.

the classical potential of reversible work (exergy). This potential The structure of this paper is as follows. Section Il discusses

depends on thermal coordinates and a dissipation ifgée. the various aspects power optimization. Properties of stead
Hamiltonian of the related problem of minimum entropy production. P P P ) P y

The generalized potential implies stronger bounds on wo§<y5tem_S are outlined '_n Sec. Ill, whereas thos_e of dynamical
delivered or supplied than the reversible potential. In reactir1€s - in Sec. IV. Section V develops quantitative analyses of
systems the chemical affinity constitutes a prevailing counterpart ggsource downgrading (in the first reservoir) and outlines
the thermal efficiency. Therefore, in reacting mixtures flux balancegroperties of generalized potentials for finite rates. Sections
are applied to derive power yield in terms of an active part &fI-VIIl discuss various Hamilton-Jacobi-Bellman equations
chemical affinity (HJIB equations) for optimal work functions, as solutions of

power vyield problems. Extensions for simple chemical
Keywords: Thermal efficiency, chemical efficiency, entropy systems are outlined in Sec. IX.

production, engines The size limitation of our paper does not allow for inclusion

of all derivations to make the paper self-contained, thus the

reader may need to turn to some previous works, [1] - [5]. In
Applications of thermodynamics of finite rates lead twiew of difficulties in getting analytical solutions in complex

solutions which describe various forms of bounds on poweystems, difference equations and numerical approaches are

and energy production (consumption) including in dynamicateated in ref. [3] which also discusses convergence of

cases finite-rate generalizations of the standard availabilitiesimerical algorithms to solutions of HIB equations and role

In this research we treat power limits in static and dynamicaf Lagrange multipliers in the dimensionality reduction.

energy systems driven by nonlinear fluids that are restricted in

their amount or magnitude of flow, and, as such, play role of Il. FINITE RESOURCES AND POWER OPTIMIZATION

resources. A power limit is an upper (lower) bound on power | jmited amount or flow of a resource working in an engine

produced (consumed) in the §ystem.Aresogrce isavaluap{lﬁjses a decrease of the resource potential in time
substance or energy used in a process; its value can h&?

I. INTRODUCTION

quantified by specifying its exergy, a maximum work that ca ronological or spatial). This is_why stu_di(_es O.f the resource
be obtained when the resource relaxes to the equilibriu (?wngrad|ng apply the dynamical optimization methods.

Reversible relaxation of the resource is associated with theo " the optimization viewpoint, dynamlca_l process Is every
classical exergy. When dissipative phenomena prevéﬁpe with _sequence of stgtes, develgplng e|ther i the
generalized exergies are essential. In fact, generalizZ8donologicaltime orin (spatial) holdup time. The first group
exergies quantify deviations of the system’s efficiency frorfefers to unsteady processes in non-stationary systems, the
the Carnot efficiency. An exergy is obtained as the princip§fcond group may involve steady state systems.

component of solution to the variational problem of Inaprocess of energy production two resting reservoirs do
extremum work under suitable boundary conditions. Othdfiteract through an energy generator (engine). In this process
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power flow is steady only when two reservoirs are infiniteoptimal point cannot be determined analytically, yet, this
When one, say, upper, reservoir is finite, its potential musgmperature can be found graphically from the chaf(T’).
decrease in time, which is consequence of the energy balanceMoreover, the method of Lagrange multipliers can
Any finite reservoir is thus a resource reservoir. It is thsuccessfully be applied [8]. As their elimination from a set of
resource property that leads to the dynamical behavior of thesulting equations is quite easy, the problem is broken down
fluid and its relaxation to the equilibrium with an infiniteto the numerical solving of a nonlinear equation for the
lower reservoir (usually the environment). optimal controlT’. Finally, the so-called pseudo-Newtonian
Alternatively, fluid at a steady flow can replace restingnodel [4, 5], which uses state or temperature dependent heat
upper reservoir. The resource downgrading is then exchange coefficieniz(T), omits, to a considerable extent,
steady-state process in which the resource fluid flows throughalytical difficulties associated with the Stefan-Boltzmann
a pipeline or stages of a cascade and the fluid’s state changgsation. Applying this model in the so-called symmetric
along a steady trajectory. As in the previous case tl@se, where both reservoirs are filled up with radiation, one
trajectory is a curve describing the fluid’s relaxation towardshows that the optimal (power maximizing) Carnot
the equilibrium between the fluid and the lower reservoir (themperature of the radiation engine is that for the CNCA
environment). This is sometimes called “active relaxation” asngine, i.e. [4]. This equation is, in fact, a good
it is associated with the simultaneous work production. #pproximation under the assumption of transfer coefficients
should be contrasted with “dissipative relaxation”, alependent solely on bulk temperatures of reservoirs.
well-known, natural process between a body or a fluid and the
environment without any power production. IV. DYNAMICAL SYSTEMS
Relaxation (either a_ctiV(_e or dissipative) I(_ead_s toad(_ecreaserhe evaluation of dynamical energy yield requires the
of the resource potential (!.e. temper.ature.) in time. An iNvergdowledge of an extremal curve rather than an extremum
of the relaxation process is the one in which a body or aﬂ“g%int. This is associated with application of variational
abapdons the equilibrium. This cannot be spontaneous; ra.t dtods (to handle functional extrema) in place of static
the inverse process needs a supply of external power. Thig Rimization methods (to handle extrema of functions). For
the process referred to thermal upgrading of the resourggample, the use of the pseudo-Newtonian model to quantify
which can be accomplished with a heat pump. the dynamical energy yield from radiation, gives rise to an
extremal curve describing the radiation relaxation to the
equilibrium. This curve is non-expotential, the consequence
The great deal of research on power limits published to daie the nonlinear properties of the relaxation dynamics.
deals with stationary systems, in which case both reservoiien-expotential are also other curves describing the radiation
are infinite. To this case refer steady-state analyses of ttegaxation, e.g. those following from exact models using the
Chambadal-Novikov-Curzon-Ahlborn engine (CNCA enginetefan-Boltzmann equation (symmetric and hybrid, [4,5]).
[6]), in which energy exchange is described by Newtonian law Analytical ~ difficulties associated with dynamical
of cooling, or the Stefan-Boltzmann engine, a system with tlptimization of nonlinear systems are severe; this is why
radiation fluids and the energy exchange governed by th#erse models of power yield and diverse numerical
Stefan-Boltzmann law [7]. Due to their stationarity (caused gpproaches are applied. Optimal (e.g. power-maximizing)
the infiniteness of both reservoirs), controls maximizingelaxation curvel(t) is associated with the optimal control
power are lumped to a fixed point in the state space. In factrve T'(t); they both are components of the dynamic
for the CNCA engine, the maximum power point may beptimization solution to a continuous problem. In the
related to the optimum value of a free (unconstrained) contr@brresponding discrete problem, formulated for numerical
variable which can be efficiengyor Carnot temperaturE. purposes, one searches for optimal temperature sequences
In terms of reservoirs temperatuf@sandT, and internal loss {T"} and {T'"}. Various discrete optimization methods
factor @ one ﬁnds-r(;pt = (T,@T,)Y? [4]. involve: direct search, dynamic programming, discrete
maximum principle, and combinations of these methods.
Minimum power supplied to the system is described in a
it suitable way by function sequenc&S(T", t"), whereas
maximum power produced — by functiong"(T", t").
Profit-type performance functionV and cost-type
performance functioR simply differ by sign, i.eV"(T", t") = -
RY(T", t"). The beginner may find the change from symbtul
symbolR and back as unnecessary and confusing. Yet, each
function is positive in its own, natural regime of working-(
in the engine range amd- in the heat pump range).
S e Importantly, energy limits of dynamical processes are
inherently connected with the exergy functions, the classical
Figure 1. Maximum power relaxation curve for black radiation €Xergy and its rate-dependent extensions. To obtain classical
without constraint on the temperature [8]. exergy from power functions it suffices to assume that the
thermal efficiency of the system is identical with the Carnot

For the Stefan-Boltzmann engine exact expression for tefficiency. On the other hand, non-Carnot efficiencies lead to

Ill. STEADY SYSTEMS
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generalized exergies. The latter depend not only on classigﬂlough finit¢' conductances’. For the radiation engine it

thermodynamic variables but also on their rates. The%a" ws from the Stefan-Boltzmann law that the effective

generalized exergies refer to state changes in a finite time, an - - S .
. : . t{ansfer coefficienta; of the radiation fluid is necessarily
can be contrasted with the classical exergies that refer 10

reversible quasistatic processes evolving in time infinitelfFMPerature dependet= OT?. The second or low-fluid
slowly. The benefit obtained from generalized exergies is thegpresents the usual environment, as defined in the exergy
they define stronger energy limits than those predicted B§eory. This fluid possesses its own boundary layer as a
classical exergies. Systematic approach to exergies (classiiasipative component, and the corresponding exchange
or generalized) based on work functionals leads to sevegslefficient isa,. In the physical space, the flow direction of
original results in thermodynamics of energy systems, e resource fluid is along the horizontal coordinat&he
particular it allows to explain unknown properties of exerggptimizer's task is to find an optimal temperature of the
of black-body radiation or solar radiation, and to show that tliesource fluid along the path that extremizes the work
efficiency of the solar energy flux transformation is equal toonsumed or delivered.

the Carnot efficiency. Total power obtained from an infinite number of
infinitesimal engines is determined as the Lagrange functional
V. TwO WORKS AND FINITETIME EXERGY of the following structure

Two different works, the first associated with the resource
downgrading during its relaxation to the equilibrium and the
second — with the reverse process of resource upgrading, are
essential (Fig.2). During the approach to the equilibriumvheref, is power generation intensity'-j, - resource flux,

engine mode takes place in which wprk is_released_, during I&‘@’)_Speciﬁc heatf(T, T’) -efficiency in terms of staf€ and
departure- hgat-pump mode oceurs in which yvork 'S.S.Upp“e((:jOntrolT, furtherT — enlarged state vector comprising state
Work W delivered in the engine mode is positive by
assumption (“engine convention”). Sequence of irreversibind time, t — time variable (residence time or holdup time)
engines (CNCA or Stefan-Boltzmann) serves to determinef@ the resource contacting with heat transfer surface.
rate-dependent exergy extending the classical exergy f9smetimes one uses a non-dimensional tinigentical with
irreversible, finite rate processes. Before maximization of fie so-called number of the heat transfer units. Note that, for
work integral, process efficienoyhas to be expressed as aonstant mass flow of a resource, one can extremize power
function of stateT and a control, i.e. energy fluxor rate  per unit mass flux, i.e. the quantity of work dimension called
dT/dz, to assure the functional property (path dependence)‘@fork at flow”. In this case Eq. (1) describes a problem of
the work integral. The integration must be preceded kxtremum work. Integranf§ is common for both modes, yet
maximization of power or work at flow (the ratio of powerthe numerical results it generates differ by sign (positive for
and flux of driving substance) w to assure an optimal patBngine mode; “engine convention”). When the resource flux
The optimal work is sought in the form of a potential functiois constant a work functional describing the thermal exergy
that depends on the end states and duration. For approprfaig per unit flux of resource can be obtained from Eq. (1)
boundary conditions, the principal function of the variational

tf tf
W[T,T! ]:j £(T, T)dt:—j Ge(T)y(T, T Tdt @
t' t'

problem of extremum work coincides with the notion of an TT' Te @
exergy, the function that characterizes quality of resources. W, == c(l')[l—
ay 1 " , q Ti’ Ta o T(T, dt/dT)
Camot SWe0 Camot wW=0
h&twmp = engine Note that the independent variable in this equation is T, i.e.
5 5 it is different than that in Eq. (1).
The functionf, in Eg. (1) contains thermal efficiency
Aokiencizir] i function, s, described by a practical counterpart of the Carnot
W=0 W =0 formula. WhenT > T°, efficiency;7 decreases in the engine
electrolyser mode battery mode . .
i s mode abovejc and increases in the heat-pump mode below

maxW problem

Nc. At the limit of vanishing ratedT/dt= 0 andT' - T.
Then work of each mode simplifies to the common integral of
the classical exergy. For the classical thermal exergy

| U R Te=T' T® . ( 3)
T, envirenment (infinite bath) T, Winax =— -[ C(r) 1-— | dT= b K- Te( S—S ) .
dT/dt-0 Zqi T

To=T" W= W T=
Nonlinearities can have both thermodynamic and kinetic
origins; the former refer, for example, to state dependent heat
Figure 2. Two works: Limiting work produced and limiting work capacity, ¢(T), the latter to nonlinear energy exchange.
consumed are different in an irreversible process. Problems with linear kinetics (Newtonian heat transfer) are an
important subclass. In problems with linear kinetics, fluid’s
The idea of an infinite number of infinitesimal CNCAspecific work at flowyw, is described by an equation
steps, necessary for exergy calculations, is illustrated in Fig.2. T Te QT eT)? (4)
Each step is a work-producing (consuming) stage with the™ T ]=W’G=_I°(r)[l_?]dT_T IIC(T)?"T
energy exchange between two fluids and the thermal machine ! '

T
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where o o, e
VTt Tt =ma —ijcm(l—di’-_ll—_,)v(T’,T)dtJ (11)
T'(t) N

X :a'avF X:a'alFVt:l (5)
Hn, G Ge X where v=a(T®)(T-T). An alternative form uses Carnot

is non-dimensional time of the process. Equation (5) assu”t]emperaturér explicit in v [5]. Optimal power (11) can be

e X
that a resource fluid flows with velocity v throughre?erred to the integral

=

. . . T . e
cross-sectiorfr -and contacts with the h.ea.It trapsfer gxchange W=-| G{%(T) —q,m(T)T}ldt
surface per unit voluma, [1]. Quantity7is identical with the T T
so-called number of the heat transfer units. T 2
Solutions to work ext bl be obtained by:  ~) TG anM2A—+@-a) ) (12)
olutions to work extremum problems can be obtained by: ] S ) T+x0

a) variational methods, i.e. via Euler-Lagrange equation of

variational calculus This process is described by a pseudolinear kinetick d

oL d /(oL 6 f(T, T') consistent withu =a(T%)(T’-T) and a general form of

T dt(a'l‘j =0 ®) HiB equation for work functiok is
In the example considered above, i.e. for a thermal system _ov + ma)E fo(r,T')—al f(T,T')) =0 - (13)
with linear kinetics o T aTr

Tﬁ _[dTJZ o (7) Wherefo is defined as the integrand of Eq. (11) or (12).
dr? dt A more exact model or radiation conversion relaxes the
which corresponds with the optimal trajectory assumption of the pseudo-Newtonian transfer and applies the
Stefan-Boltzmann law. For symmetricmodel of radiation
T, T, T =T (T /Ti)r/rf ] (8) conversion (both reservoirs composed of radiation)

tf e a_-ra
. | | W= fem -2 LT g (19)
(f =0 is assumed in Eq. (8).) However, the solution of ; T ) (@(TTe)t+pTat
EuIer-Lagrange equation dqes not -co-ntain any informat.ion The coefficient i
about the optimal work function. This is assured by solving o
the Hamilton-Jacobi-Bellman equation (HJB equation, [9]).constant of photons density | and Stefan-Boltzmann
b) dynamic programming via HJB equation for theonstanto. In the physical space, power exponantt for

‘principal function” (Vv or R), also called extremum work radiation anca=1 for a linear resource. With state equation
function. For the linear kinetics considered

VN max Y —ca-Tyr-m)l=0.  © oo s T-T7 (15)
ar T oT T dt (@ (T ITeP L +)T
Observe that all ratedy(andf) and derivatives o¥/ are o _ _
evaluated at the final state (the so-called ‘forward equation[] applied in general Eq. (19) we obtaiiaB equation
The extremal work functiol is a function of the final state

and total duration. After evaluation of optimal control and its . 2 i
o ) ) : G (1-2—) T -T _~ (16)
substitution to Eq. (9) one obtains a nonlinear equation ——— +max T8 =0

ot TO LSy at @' (T IT,)* +T?
v _ <{\/¥ - T+ v /aT )}2 =0.  (10)
or Dynamics (15) is the characteristic equation for Eq. (16).
which is the Hamilton-Jacobi equation of the problem. Its Fora hybrid modebf radiation conversion (upper reservoir
solution can be found by the integration of work intensitgomposed of the radiation and lower reservoir of a Newtonian
along an optimal path, between limitsand T'. A reversible fluid, [5]) the power is
(path independent) part ¥fis the classical exergy(T, T¢, 0).

Models of multistage power production in sequences of S
infinitesimal engines [1]-[5] provide power generation Wz‘JGc(T)[l‘
functionsf, or thermal Lagrangiank = -f; and dynamical ¢
constraints. Numerical methods apply suitable discrete ) ] . o
models, for given rateg and f. An important issue is and the corresponding Hamilton-Jacobi-Bellman equation is

convergence of these discrete models to continuous ones [3]. '
G (M- (18)
oT° av |up=0

+
(Ta + ﬁ—l-l-a—]u)lla + <15ﬁ_1Ta'1ugll gz) an

sB=o0ac,(py)~" is related to molar

Te

dT® ]udt
(T2 + BT o T ug /g, (17)

P
VI. HJBEQUATIONS FOR NONLINEAR POWER SYSTEMS o T ’P%X{_

We shall display here some Hamilton-Jacobi-Bellman
equations for power systems described by nonlinear kinetics.
A suitable example is a radiation engine whose power integral
is approximated by a pseudo-Newtonian model of radiative

energy exchange associated with optimal function In all HIB equations extremized expressions are some
hamiltonians. By applying the feedback control optimal

driving temperaturd” or other control is implemented as the

VII. ANALYTICAL ASPECTS OF LINEAR AND
PSEUDGNEWTONIAN KINETICS
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quantity maximizing the hamiltonian with respectToat temperature dependent heat capacjfy)=4a,T°. Positiveé

each point of the path. The maximization ldfleads to two refer to heating of the resource fluid in the heat-pump mode,
equations. The first expresses optimal coriftah terms ofT  and the negative - to cooling of this fluid in the engine mode.
andz = - 9V/aT. For the Iinear kinetics of Eq. (9) we obtain Thus pseudo-Newtonian resources produce power relaxing

vV _of(T.T) ) (19) with the optimal raFe

oT  oT aT T=¢(h, T, 2)T. (28)
whereas the second is the or|g|nal equation (9) withouieqyations (27) and (28) describe the optimal trajectory in
maximizing operation terms of state variablBand constarti. The optimal (Carnot)

oV, al (T-T)+c(l- 72)@- -T)=0 (20) controlis

o7 T'=(1+¢(h,, )T (29)

To obtain opt|mal control functloﬁ'(z, T) one should solve
the second equality in equation (19) in term3'of he result
is Carnot control" in terms ofT andz = - dV/dT,

The presence of resource temperafure function ¢ proves
that, in comparison with the linear systems, the
pseudo-Newtonian relaxation curve is not exponential.

1/2
e TT ) (21)
1+c'ov/oT VIII.  OPTIMAL WORK FUNCTIONS FOR LINEAR AND
This is next substituted into (20); the result is the nonlinear PSEUDO-NEWTONIAN KINETICS
Hamilton- Jacobi equation A solution can now be found to the problem of Hamiltonian

1(\/ =) JTe )2 (22) representation of extremal worket us begin with linear
37"' Clvi+ COV/OT —NT/T 0 systems. Substituting temperature control (29) with a constant

which contains the energylike (extremum) Hamiltonian of thé into work functional (4) and integrating along an optimal
extremal process. path yields extremal work function

oV, _ A el 23 ; CdT T et —ere [N n T (30
H(T20) c1(\/1+c OVIAT -T /T)2 @3) VT, h=qT-T)-cTIn cTJcTelan (30)

For a positively-definedH, each Hamilton-Jacobi equation This expression is valid for every process mode. Integration
for optimal work preserves the general form of autonomows Eq (27) subject to end conditioig7)=T and T(7)=T'
equations known from analytical mechanics and theory aflows to express Eq. (30) in terms of the process duration.
optimal control. For the radiationc,(T)=4a,T°, wherea, is the radiation
Expressing extremum Hamiltonian (23) in terms of stateonstant, an optimal trajectory solving Egs. (27) and (29) is
variapIeT gnd_ Carnot con.trorr ' y_ields an energy-like + (41 3ag 20 ?h, 1/2(T3/2 T.S/z) (T /Ty =7-1
function satisfying the following relations (31)
6 _ereT =D (™ T) (24) The integration limits refer to the initial stat§ @nda

BT.0) = 1o~ au T2 current state of the radiation fluid, i.e. temperatireand T
E is the Legendre transform of the work lagrandian -f,  corresponding with' and 7. Optimal curve (31) refers to the
with respect to the rate= dT/dr . case when the radiation relaxation is subject to a constraint
Assuming a numerical value of the Hamiltonian, kagne ~ "esulting from Eq. (28). . .
can exploit the constancy d¢i to eliminatedV/dT. Next Equation (31) is associated with the entropy production
combining equatiohi=h with optimal control (21), or with an t€rm in Eq. (12). The corresponding extremal work function
equivalent result for energy flow contnaT =T per unit volume of flowing radiation is
1/2
u :[:I;e"l'] -T: (25 vz p-y-T(g-9) (32)
1fL crov/aT - (413)a, 2 > T (T =T ™ )+ (413, Te@-d)(T° -T")
yields optimal ratei=T in terms of temperaturg and the
Hamiltonian constartt Also, the corresponding exergy function, obtained from (32)
after applying exergy boundary conditions, has an explicit
T i\/ W cT®(1- t\/ h cT®) '1}T analytical form. The classical availability of radiation at flow

(26) resides in the resulting exergy equation in Jeter’s [10] form
A more general form of this result which applies to systems

with internal dissipation (factor®) and applies to the AT TO=h-K-T(s-5) (33)
pseudo-Newtonian model of radiation is = h@- T /T)= 4/3)aT'A-T°/T)
-1
toly [Lhe [1_1 h, J Tz, oy (27 IX. WORK FUNCTIONS FOR CHEMICAL SYSTEMS
@c, (T) @c, (T) The developed methodology can be extended to chemical

and electrochemical engines [11]. As opposed to thermal
whereé, defined in the above equation, is an intensity indespachines, in chgmical ones generalized reservoirs are.pr-es-ent,
and h,=h/T. This result is obtained by the application ofcapable of providing both heat and substance. When infinite

variational calculus to nonlinear radiation fluids with thg€servoirs assure constancy of chemical potentials, problems
of extremum power (maximum of power produced and
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minimum of power consumed) are static optimization For low rates and large concentratidhgmole fractions x
problems. For finite reservoirs, however, amount andose to the unity) optimal relaxation rate is approximately
chemical potential of an active reactant decrease in time, azwhstant. Yet, in an arbitrary situation optimal rates are state
considered problems are those of dynamic optimization adédpendent so as to preserve the constanklinfEq. (38).
variational calculus. The simplest model of power producing Fuel cell examples and their theory are analyzed in our
chemical engine is that with an isothermal and isomerjarevious paper presented at the ICREPQ’11[13].

reaction, A+A,=0 [11]. Power expression and efficiency

formula for the chemical system follow from entropy X. CONCLUSIONS

conservation and energy balance in the power-producing zongyptimal power data show that the data differ for power
In endoreversible engines total entropy flux is constagenerated and consumed, and depend on parameters of the
through the active zone. When the constancy formula dgstem, e.g.: flux intensity, number of transfer units,
combined with energy balance we find in an isothermal casgoarizations, surface area, average process rate, ratio of

P = (4= Hp)n (34) stream flows, stream directions, etc. The data provide bounds
where n is an invariant molar flux of reagents. Proces#r power generators that are more exact and stronger than
efficiency ¢is defined as power yield per molar flux,i.e. reversible bounds. As opposed to classical thermodynamics,

our bounds depend not only on changes of the thermodynamic
7= pIn= iy — iy (35) State of participating resources but also on process

irreversibilities, process direction and mechanism of heat and
mass transfer. Only in thermostatics the bound on the work
produced coincides with that on the work consumed. The
generalized thermo-kinetic bounds, obtained here, do not
satisfy the reversibility property. Only for infinitely long

durations or for processes with excellent transfer (an infinite
J number of transfer units) the thermokinetic bounds reduce to

This efficiency is identical with the chemical affinity of our
reaction in the chemically active part of the system.

For a steady engine the following function defines th
chemical efficiency in terms af and mole fractiox (Fig. 3)

(36) classical thermostatic bounds [14]. Thus, with irreversible
thermodynamics, we can confront and surmount the
limitations of applying classical thermodynamics to real

]
Z=ZO+RTIn[)i L

=]
ng," + X,

g processes. This is a direction with many opportunities.
efficiency
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