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Abstract—This research represents a thermodynamic approach to 

modeling and power optimization of energy converters, such like 
thermal, solar, chemical and electrochemical engines. 
Thermodynamics leads to converter’s efficiency and limiting 
generated power. Efficiency equations serve to solve problems of 
upgrading and downgrading of resources. Real work yield is a 
cumulative effect obtained in a system of a resource fluid, engines, 
and an infinite bath. While optimization of steady systems requires 
using of differential calculus and Lagrange multipliers, dynamic 
optimization needs variational calculus and dynamic programming. 
The primary result of the static optimization is the limiting power, 
whereas that of dynamic optimization is a finite-rate counterpart of 
the classical potential of reversible work (exergy). This potential 
depends on thermal coordinates and a dissipation index, h, i.e. the 
Hamiltonian of the related problem of minimum entropy production. 
The generalized potential implies stronger bounds on work 
delivered or supplied than the reversible potential. In reacting 
systems the chemical affinity constitutes a prevailing counterpart of 
the thermal efficiency. Therefore, in reacting mixtures flux balances 
are applied to derive power yield in terms of an active part of 
chemical affinity. 
 

Keywords: Thermal efficiency, chemical efficiency, entropy 
production, engines.  

I. INTRODUCTION 

Applications of thermodynamics of finite rates lead to 
solutions which describe various forms of bounds on power 
and energy production (consumption) including in dynamical 
cases finite-rate generalizations of the standard availabilities. 
In this research we treat power limits in static and dynamical 
energy systems driven by nonlinear fluids that are restricted in 
their amount or magnitude of flow, and, as such, play role of 
resources. A power limit is an upper (lower) bound on power 
produced (consumed) in the system. A resource is a valuable 
substance or energy used in a process; its value can be 
quantified by specifying its exergy, a maximum work that can 
be obtained when the resource relaxes to the equilibrium. 
Reversible relaxation of the resource is associated with the 
classical exergy. When dissipative phenomena prevail 
generalized exergies are essential. In fact, generalized 
exergies quantify deviations of the system’s efficiency from 
the Carnot efficiency. An exergy is obtained as the principal 
component of solution to the variational problem of 
extremum work under suitable boundary conditions. Other 

components of the solution are optimal trajectory and optimal 
control. In purely thermal systems (those without chemical 
changes) the trajectory is characterized by temperature of the 
resource fluid, T(t), whereas the control is Carnot temperature 
T’(t) defined in our previous work [1, 2]. For chemical 
systems also chemical potential(s) µ’ (t) plays a role.  

Whenever T’(t) and µ’ (t) differ from T(t) and µ(t) the 
resource relaxes with a finite rate, and with an efficiency 
vector different from the perfect efficiency. Only when T’ = T 
and µ’= µ the efficiency is perfect, but this corresponds with 
an infinitely slow relaxation rate of the resource to the 
thermodynamic equilibrium with the environmental fluid.  

The structure of this paper is as follows. Section II discusses 
various aspects power optimization. Properties of steady 
systems are outlined in Sec. III, whereas those of dynamical 
ones - in Sec. IV. Section V develops quantitative analyses of 
resource downgrading (in the first reservoir) and outlines 
properties of generalized potentials for finite rates. Sections 
VI-VIII discuss various Hamilton-Jacobi-Bellman equations 
(HJB equations) for optimal work functions, as solutions of 
power yield problems. Extensions for simple chemical 
systems are outlined in Sec. IX.  

The size limitation of our paper does not allow for inclusion 
of all derivations to make the paper self-contained, thus the 
reader may need to turn to some previous works, [1] - [5]. In 
view of difficulties in getting analytical solutions in complex 
systems, difference equations and numerical approaches are 
treated in ref. [3] which also discusses convergence of 
numerical algorithms to solutions of HJB equations and role 
of Lagrange multipliers in the dimensionality reduction. 

II.  FINITE RESOURCES AND POWER OPTIMIZATION 

Limited amount or flow of a resource working in an engine 
causes a decrease of the resource potential in time 
(chronological or spatial). This is why studies of the resource 
downgrading apply the dynamical optimization methods. 
From the optimization viewpoint, dynamical process is every 
one with sequence of states, developing either in the 
chronological time or in (spatial) holdup time. The first group 
refers to unsteady processes in non-stationary systems, the 
second group may involve steady state systems.  

In a process of energy production two resting reservoirs do 
interact through an energy generator (engine). In this process 
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power flow is steady only when two reservoirs are infinite. 
When one, say, upper, reservoir is finite, its potential must 
decrease in time, which is consequence of the energy balance. 
Any finite reservoir is thus a resource reservoir. It is the 
resource property that leads to the dynamical behavior of the 
fluid and its relaxation to the equilibrium with an infinite 
lower reservoir (usually the environment).  

Alternatively, fluid at a steady flow can replace resting 
upper reservoir. The resource downgrading is then a 
steady-state process in which the resource fluid flows through 
a pipeline or stages of a cascade and the fluid’s state changes 
along a steady trajectory. As in the previous case the 
trajectory is a curve describing the fluid’s relaxation towards 
the equilibrium between the fluid and the lower reservoir (the 
environment). This is sometimes called “active relaxation” as 
it is associated with the simultaneous work production. It 
should be contrasted with “dissipative relaxation”, a 
well-known, natural process between a body or a fluid and the 
environment without any power production.  

Relaxation (either active or dissipative) leads to a decrease 
of the resource potential (i.e. temperature) in time. An inverse 
of the relaxation process is the one in which a body or a fluid 
abandons the equilibrium. This cannot be spontaneous; rather 
the inverse process needs a supply of external power. This is 
the process referred to thermal upgrading of the resource, 
which can be accomplished with a heat pump. 

III.  STEADY SYSTEMS 

The great deal of research on power limits published to date 
deals with stationary systems, in which case both reservoirs 
are infinite. To this case refer steady-state analyses of the 
Chambadal-Novikov-Curzon-Ahlborn engine (CNCA engine 
[6]), in which energy exchange is described by Newtonian law 
of cooling, or the Stefan-Boltzmann engine, a system with the 
radiation fluids and the energy exchange governed by the 
Stefan-Boltzmann law [7]. Due to their stationarity (caused by 
the infiniteness of both reservoirs), controls maximizing 
power are lumped to a fixed point in the state space. In fact, 
for the CNCA engine, the maximum power point may be 
related to the optimum value of a free (unconstrained) control 
variable which can be efficiency η or Carnot temperature T’. 
In terms of reservoirs temperatures T1 and T2 and internal loss 
factor Φ one finds 21

21=′ /)( ΦTTTopt  [4].  

 
Figure 1. Maximum power relaxation curve for black radiation 

without constraint on the temperature [8]. 

 
For the Stefan-Boltzmann engine exact expression for the 

optimal point cannot be determined analytically, yet, this 
temperature can be found graphically from the chart P=f(T’).  

Moreover, the method of Lagrange multipliers can 
successfully be applied [8]. As their elimination from a set of 
resulting equations is quite easy, the problem is broken down 
to the numerical solving of a nonlinear equation for the 
optimal control T’. Finally, the so-called pseudo-Newtonian 
model [4, 5], which uses state or temperature dependent heat 
exchange coefficient, α(T3), omits, to a considerable extent, 
analytical difficulties associated with the Stefan-Boltzmann 
equation. Applying this model in the so-called symmetric 
case, where both reservoirs are filled up with radiation, one 
shows that the optimal (power maximizing) Carnot 
temperature of the radiation engine is that for the CNCA 
engine, i.e.  [4]. This equation is, in fact, a good 
approximation under the assumption of transfer coefficients 
dependent solely on bulk temperatures of reservoirs.  

IV.  DYNAMICAL SYSTEMS 

The evaluation of dynamical energy yield requires the 
knowledge of an extremal curve rather than an extremum 
point. This is associated with application of variational 
metods (to handle functional extrema) in place of static 
optimization methods (to handle extrema of functions). For 
example, the use of the pseudo-Newtonian model to quantify 
the dynamical energy yield from radiation, gives rise to an 
extremal curve describing the radiation relaxation to the 
equilibrium. This curve is non-expotential, the consequence 
of the nonlinear properties of the relaxation dynamics. 
Non-expotential are also other curves describing the radiation 
relaxation, e.g. those following from exact models using the 
Stefan-Boltzmann equation (symmetric and hybrid, [4,5]).  

Analytical difficulties associated with dynamical 
optimization of nonlinear systems are severe; this is why 
diverse models of power yield and diverse numerical 
approaches are applied. Optimal (e.g. power-maximizing) 
relaxation curve T(t) is associated with the optimal control 
curve T’(t); they both are components of the dynamic 
optimization solution to a continuous problem. In the 
corresponding discrete problem, formulated for numerical 
purposes, one searches for optimal temperature sequences 
{ Tn} and {T’n}. Various discrete optimization methods 
involve: direct search, dynamic programming, discrete 
maximum principle, and combinations of these methods.  

Minimum power supplied to the system is described in a 
suitable way by function sequences Rn(Tn, tn), whereas 
maximum power produced – by functions Vn(Tn, tn). 
Profit-type performance function V and cost-type 
performance function R simply differ by sign, i.e. Vn(Tn, tn) = - 
Rn(Tn, tn). The beginner may find the change from symbol V to 
symbol R and back as unnecessary and confusing. Yet, each 
function is positive in its own, natural regime of working (V - 
in the engine range and R - in the heat pump range).  

Importantly, energy limits of dynamical processes are 
inherently connected with the exergy functions, the classical 
exergy and its rate-dependent extensions. To obtain classical 
exergy from power functions it suffices to assume that the 
thermal efficiency of the system is identical with the Carnot 
efficiency. On the other hand, non-Carnot efficiencies lead to 
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generalized exergies. The latter depend not only on classical 
thermodynamic variables but also on their rates. These 
generalized exergies refer to state changes in a finite time, and 
can be contrasted with the classical exergies that refer to 
reversible quasistatic processes evolving in time infinitely 
slowly. The benefit obtained from generalized exergies is that 
they define stronger energy limits than those predicted by 
classical exergies. Systematic approach to exergies (classical 
or generalized) based on work functionals leads to several 
original results in thermodynamics of energy systems, in 
particular it allows to explain unknown properties of exergy 
of black-body radiation or solar radiation, and to show that the 
efficiency of the solar energy flux transformation is equal to 
the Carnot efficiency. 

V. TWO WORKS AND  FINITE-TIME EXERGY 

Two different works, the first associated with the resource 
downgrading during its relaxation to the equilibrium and the 
second – with the reverse process of resource upgrading, are 
essential (Fig.2). During the approach to the equilibrium 
engine mode takes place in which work is released, during the 
departure- heat-pump mode occurs in which work is supplied. 
Work W delivered in the engine mode is positive by 
assumption (“engine convention”). Sequence of irreversible 
engines (CNCA or Stefan-Boltzmann) serves to determine a 
rate-dependent exergy extending the classical exergy for 
irreversible, finite rate processes. Before maximization of a 
work integral, process efficiency η has to be expressed as a 
function of state T and a control, i.e. energy flux q or rate 
dT/dτ, to assure the functional property (path dependence) of 
the work integral. The integration must be preceded by 
maximization of power or work at flow (the ratio of power 
and flux of driving substance) w to assure an optimal path. 
The optimal work is sought in the form of a potential function 
that depends on the end states and duration. For appropriate 
boundary conditions, the principal function of the variational 
problem of extremum work coincides with the notion of an 
exergy, the function that characterizes quality of resources.  

  
Figure 2. Two works: Limiting work produced and limiting work 

consumed are different in an irreversible process. 
 
The idea of an infinite number of infinitesimal CNCA 

steps, necessary for exergy calculations, is illustrated in Fig.2. 
Each step is a work-producing (consuming) stage with the 
energy exchange between two fluids and the thermal machine 

through finite“ conductances”. For the radiation engine it 

follows from the Stefan-Boltzmann law that the effective 
transfer coefficient α1 of the radiation fluid is necessarily 

temperature dependent, α1= .3
1∝ T  The second or low-T fluid 

represents the usual environment, as defined in the exergy 
theory. This fluid possesses its own boundary layer as a 
dissipative component, and the corresponding exchange 
coefficient is α2. In the physical space, the flow direction of 
the resource fluid is along the horizontal coordinate x. The 
optimizer’s task is to find an optimal temperature of the 
resource fluid along the path that extremizes the work 
consumed or delivered.  

Total power obtained from an infinite number of 
infinitesimal engines is determined as the Lagrange functional 
of the following structure 

∫∫ ′−=′= 0

f
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f

i

t

t

t

t

fi dtTTTηTcGdtTTfW &&& ),()(),(][ T,T     (1) 

where f0 is power generation intensity, G&  - resource flux, 
c(T)-specific heat, η(T, T’) -efficiency in terms of state T and 

control T, further T –  enlarged state vector comprising state 

and time,  t – time variable (residence time or holdup time) 

for the resource contacting with heat transfer surface. 
Sometimes one uses a non-dimensional time τ, identical with 
the so-called number of the heat transfer units. Note that, for 
constant mass flow of a resource, one can extremize power 
per unit mass flux, i.e. the quantity of work dimension called 
“work at flow”. In this case Eq. (1) describes a problem of 
extremum work. Integrand f0 is common for both modes, yet 
the numerical results it generates differ by sign (positive for 
engine mode; “engine convention”). When the resource flux 
is constant a work functional describing the thermal exergy 
flux per unit flux of resource can be obtained from Eq. (1) 
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Note that the independent variable in this equation is T, i.e. 
it is different than that in Eq. (1).  

The function f0 in Eq. (1) contains thermal efficiency 
function, η, described by a practical counterpart of the Carnot 
formula. When T > Te, efficiency η  decreases in the engine 
mode above ηC and increases in the heat-pump mode below 
ηC. At the limit of vanishing rates, dT/dt = 0 and TT →′ . 
Then work of each mode simplifies to the common integral of 
the classical exergy.  For the classical thermal exergy 
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Nonlinearities can have both thermodynamic and kinetic 
origins; the former refer, for example, to state dependent heat 
capacity, c(T), the latter to nonlinear energy exchange. 
Problems with linear kinetics (Newtonian heat transfer) are an 
important subclass. In problems with linear kinetics, fluid’s 
specific work at flow, w, is described by an equation 
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is non-dimensional time of the process. Equation (5) assumes 
that a resource fluid flows with velocity v through 
cross-section F and contacts with the heat transfer exchange 
surface per unit volume av [1]. Quantity τ is identical with the 
so-called number of the heat transfer units.  

Solutions to work extremum problems can be obtained by: 
a) variational methods, i.e. via Euler-Lagrange equation of 

variational calculus 
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In the example considered above, i.e. for a thermal system 
with linear kinetics  
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which corresponds with the optimal trajectory 
  

fififif TTTTTT ττττ /)/(),,,( =  .    (8) 

 
(τi =0 is assumed in Eq. (8).) However, the solution of 
Euler-Lagrange equation does not contain any information 
about the optimal work function. This is assured by solving 
the Hamilton-Jacobi-Bellman equation (HJB equation, [9]).   

 b) dynamic programming via HJB equation for the 
‘principal function’ (V or R), also called extremum work 
function. For the linear kinetics considered 
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Observe that all rates (f0 and f) and derivatives of V are 
evaluated at the final state (the so-called ‘forward equation’). 
The extremal work function V is a function of the final state 
and total duration. After evaluation of optimal control and its 
substitution to Eq. (9) one obtains a nonlinear equation 
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which is the Hamilton-Jacobi equation of the problem. Its 
solution can be found by the integration of work intensity 
along an optimal path, between limits Ti and Tf. A reversible 
(path independent) part of V is the classical exergy A(T, Te, 0).   

Models of multistage power production in sequences of 
infinitesimal engines [1]-[5] provide power generation 
functions f0 or thermal Lagrangians l0 = -f0 and dynamical 
constraints. Numerical methods apply suitable discrete 
models, for given rates f0 and f. An important issue is 
convergence of these discrete models to continuous ones [3]. 

VI.  HJB EQUATIONS FOR NONLINEAR POWER SYSTEMS 

We shall display here some Hamilton-Jacobi-Bellman 
equations for power systems described by nonlinear kinetics. 
A suitable example is a radiation engine whose power integral 
is approximated by a pseudo-Newtonian model of radiative 
energy exchange associated with optimal function 
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where υ =α(T3)(T’-T). An alternative form uses Carnot 
temperature T’ explicit in υ [5]. Optimal power (11) can be 
referred to the integral  
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This process is described by a pseudolinear kinetics dT/dt = 
f(T, T’) consistent with υ =α(T3)(T’-T) and a general form of 
HJB equation for work function V is 
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where f0 is defined as the integrand of Eq. (11) or (12). 
A more exact model or radiation conversion relaxes the 

assumption of the pseudo-Newtonian transfer and applies the 
Stefan-Boltzmann law. For a symmetric model of radiation 
conversion (both reservoirs composed of radiation)  
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The coefficient is 101 )( −−= mhv pcaσβ  is related to molar 

constant of photons density 0
mp  and Stefan-Boltzmann 

constant σ. In the physical space, power exponent a=4 for 
radiation and a=1 for a linear resource. With state equation  
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[5] applied in general Eq. (19) we obtain a HJB equation 
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Dynamics (15) is the characteristic equation for Eq. (16). 

For a hybrid model of radiation conversion (upper reservoir 
composed of the radiation and lower reservoir of a Newtonian 
fluid, [5]) the power is 
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and the corresponding Hamilton-Jacobi-Bellman equation is 
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VII.  ANALYTICAL ASPECTS OF LINEAR AND 

PSEUDO-NEWTONIAN KINETICS 

In all HJB equations extremized expressions are some 
hamiltonians. By applying the feedback control optimal 
driving temperature T' or other control is implemented as the 
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quantity maximizing the hamiltonian with respect to T’ at 
each point of the path. The maximization  of  H leads to two 
equations. The first expresses optimal control T' in terms of T 
and z = - ∂V/∂T. For the linear kinetics of Eq. (9) we obtain 
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whereas the  second  is  the  original equation (9) without 
maximizing operation 
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To obtain optimal control function T'(z, T) one should solve 
the second equality in equation (19) in terms of T', The result 
is Carnot control T' in terms of T and z = - ∂V/∂T, 

2/1

1 /1 








∂∂+
=′

− TVc

TT
T

e
.       (21) 

This  is next substituted into (20); the result is the nonlinear 
Hamilton-Jacobi equation 
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which contains the energylike (extremum) Hamiltonian of the 
extremal process.  
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For a positively-defined H, each Hamilton-Jacobi equation 
for optimal work preserves the general form of autonomous 
equations known from analytical mechanics and theory of 
optimal control. 

Expressing extremum Hamiltonian (23) in terms of state 
variable T and Carnot control T ' yields an energy-like 
function satisfying the following relations 
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E is the Legendre transform of the work lagrangian l0 = - f0 
with respect to the rate u = dT/dτ . 

Assuming a numerical value of the Hamiltonian, say h, one 
can exploit the constancy of H to eliminate ∂V/∂T. Next 
combining equation H=h with optimal control (21), or with an 
equivalent result for energy flow control u=T ‘-T  
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yields optimal rate u=T& in terms of temperature T and the 
Hamiltonian constant h 
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A more general form of this result which applies to systems 
with internal dissipation (factor Φ) and applies to the 
pseudo-Newtonian model of radiation is 
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where ξ , defined in the above equation, is an intensity index 
and hσ=h/T. This result is obtained by the application of 
variational calculus to nonlinear radiation fluids with the 

temperature dependent heat capacity cv(T)=4a0T
3. Positive ξ 

refer to heating of the resource fluid in the heat-pump mode, 
and the negative - to cooling of this fluid in the engine mode. 
Thus pseudo-Newtonian resources produce power relaxing 
with the optimal rate 

TΦThT ),,( σξ=& .        (28) 

Equations (27) and (28) describe the optimal trajectory in 
terms of state variable T and constant h. The optimal (Carnot) 
control is 

( )TTΦT ),,(1 σξ h+=′       (29) 

The presence of resource temperature T in function ξ proves 
that, in comparison with the linear systems, the 
pseudo-Newtonian relaxation curve is not exponential. 

VIII.  OPTIMAL WORK FUNCTIONS FOR LINEAR AND 

PSEUDO-NEWTONIAN KINETICS 

 A solution can now be found to the problem of Hamiltonian 
representation of extremal work. Let us begin with linear 
systems. Substituting temperature control (29) with a constant 
ξ into work functional (4) and integrating along an optimal 
path yields extremal work function 
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This expression is valid for every process mode. Integration 
of Eq (27) subject to end conditions T(τi)=Ti and T(τf)=Tf 

allows to express Eq. (30) in terms of the process duration.  
For the radiation cv(T)=4a0T

3, where a0 is the radiation 
constant, an optimal trajectory solving Eqs. (27) and (29) is       
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  (31) 
The integration limits refer to the initial state (i) and a 

current state of the radiation fluid, i.e. temperatures Ti and T 

corresponding with τi and τ. Optimal curve (31) refers to the 
case when the radiation relaxation is subject to a constraint 
resulting from Eq. (28).   

Equation (31) is associated with the entropy production 
term in Eq. (12). The corresponding extremal work function 
per unit volume of flowing radiation is 
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Also, the corresponding exergy function, obtained from (32) 
after applying exergy boundary conditions, has an explicit 
analytical form. The classical availability of radiation at flow 
resides in the resulting exergy equation in Jeter’s [10] form  
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IX. WORK FUNCTIONS FOR CHEMICAL SYSTEMS  

The developed methodology can be extended to chemical 
and electrochemical engines [11]. As opposed to thermal 
machines, in chemical ones generalized reservoirs are present, 
capable of providing both heat and substance. When infinite 
reservoirs assure constancy of chemical potentials, problems 
of extremum power (maximum of power produced and 
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minimum of power consumed) are static optimization 
problems. For finite reservoirs, however, amount and 
chemical potential of an active reactant decrease in time, and 
considered problems are those of dynamic optimization and 
variational calculus. The simplest model of power producing 
chemical engine is that with an isothermal and isomeric 
reaction, A1+A2=0 [11]. Power expression and efficiency 
formula for the chemical system follow from entropy 
conservation and energy balance in the power-producing zone. 
In endoreversible engines total entropy flux is constant 
through the active zone. When the constancy formula is 
combined with energy balance we find in an isothermal case 

np )( '2'1 µµ −=          (34) 
where n is an invariant molar flux of reagents. Process 
efficiency ζ is defined as power yield per molar flux, n, i.e. 
 

'2'1/ µµζ −== np             (35) 

 
This efficiency is identical with the chemical affinity of our 

reaction in the chemically active part of the system.  
For a steady engine the following function defines the 

chemical efficiency in terms of n and mole fraction x (Fig. 3) 
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Figure 3. Efficiency of power production ζ in terms of fuel flux n in 
a chemical engine.  
 

 Equation (36) shows that effective concentration of 
reactant in upper reservoir  x1eff = x1 – g1

-1n is decreased, 
whereas effective concentration of product in lower reservoir 
x2eff = x2 + g2

-1 n is increased due to the finite mass flux. 
Therefore efficiency ζ decreases nonlinearly with n. When 
effect of resistances 1−

kg is ignorable or flux n is very small, 

reversible efficiency, ζC, is attained. Power function, 
described by the product ζ(n)n, exhibits a maximum for a 
finite fuel flux, n. Extensions of Eq. (36) are available [12].    

Application of Eq. (36) to an unsteady system leads to a 
work function describing the dynamical limit of the system 

1
112

1
0 /

/)1/(
ln

1

1

τ
ττ

τζ
τ

τ

d
d

dX

djdXx

ddXXX
RTW

f

i 
















−
+++−= ∫

   (37) 

(X=x/(1-x).) The path optimality condition may be expressed 
in terms of the constancy of the following Hamiltonian 
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For  low rates and large concentrations X  (mole fractions x1 
close to the unity) optimal relaxation rate is approximately 
constant. Yet, in an arbitrary situation optimal rates are state 
dependent so as to preserve the constancy of H in Eq. (38). 

Fuel cell examples and their theory are analyzed in our 
previous paper presented at the ICREPQ’11[13].  

X. CONCLUSIONS  

Optimal power data show that the data differ for power 
generated and consumed, and depend on parameters of the 
system, e.g.: flux intensity, number of transfer units, 
polarizations, surface area, average process rate, ratio of 
stream flows, stream directions, etc. The data provide bounds 
for power generators that are more exact and stronger than 
reversible bounds. As opposed to classical thermodynamics, 
our bounds depend not only on changes of the thermodynamic 
state of participating resources but also on process 
irreversibilities, process direction and mechanism of heat and 
mass transfer. Only in thermostatics the bound on the work 
produced coincides with that on the work consumed. The 
generalized thermo-kinetic bounds, obtained here, do not 
satisfy the reversibility property. Only for infinitely long 
durations or for processes with excellent transfer (an infinite 
number of transfer units) the thermokinetic bounds reduce to 
classical thermostatic bounds [14]. Thus, with irreversible  
thermodynamics, we can confront and surmount the 
limitations of applying classical thermodynamics to real 
processes. This is a direction with many opportunities.  
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