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Abstract.  
 
Stochastic simulation methods are normally extended as the only 
available to assess the reliability of the  PV system implies the 
generation, for an extended period of time, of the main state 
variables of the physical equations describing the energy balance 
of the system, that is, the energy delivered to the load and the 
energy stored in the batteries. Most of these methods consider 
the daily load as a constant over the year and control the 
variables indicating the reliability associated with the supply of 
power to the load. Furthermore, these methods rely on previous 
random models forgenerating solar radiation data and, since the 
approximations of the simulation methods are asymptotic, when 
more precise reliability indicators are required, the simulation 
period needs to be extended. This paper presents a mathematical 
methodology to address the daily energy balance without 
resorting to simulation methods. 
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1. Introduction 
 
The Loss of Load Probability, LLP , is the reliability 
index given by most of the stand-alone photovoltaic 
system (SAPV) sizing methods [1-10]. This index 
represents the ratio of the global deficit to the global 
energy demand, both considered throughout the 
installation operating time. 
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On the other hand, SAPVs can be characterized by means 
of: 

 the photovoltaic generator capacity,  AC β : defined as 

the ratio or quotient between the average daily energy 
produced by the generator and the average daily energy 
consumed by the load (equation 2).  
 the accumulator capacity, 

SC : defined as the maximum 

energy that can be extracted from the accumulator or the 
useful storage capacity of the accumulator, 

UC , divided by 

the energy consumption of the load (equation 3) 
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In these equations GA  and Gη  are the area and 

conversion efficiency of the photovoltaic generator 

respectively, gH   is the monthly mean value of daily 

irradiation on the plane of the array, L  is the mean daily 

energy load, maxPD  is the maximum allowable discharge 

depth of the battery (dimensionless) and 
BC  is the nominal 

capacity of the battery [1]. 
 
Thus, when sizing SAPVs it is important to determine the 

pair of AC  and SC  values leading to a given value of 

LLP  with a minimum cost. 
 
In a previous paper, the authors presented a mathematical 
method to characterize the variables associated with the 
energy balance of a SAPV [12]. The main feature of this 
novel sizing technique is that it is not based on simulation 
so it does not have its disadvantages, such as the 
dependency on the number of iterations to get accurate 
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results. To the contrary, this method is based on the 
estimation of the useful energy stored in the battery, B , 
by means of its probability density function. 
 

Being iB  the useful energy stored in the battery before the 

sunrise of the day i  and considering that the battery state 
is recorded at the beginning of the solar day, it will range 

from zero (discharged battery) to UC  (maximum energy 

storage): 
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In equation (4) '

iB  is an auxiliary variable which 

represents the net energy balance required to meet 
adequately the demand and it can be written as the sum of 
two stochastic variables: the energy stored in the battery 
or the state of the battery at the end of consumption on 

day  1i  , -1iB , and the net energy gain of the battery 

during the day i , iE , that is, the difference between the 

incoming energy, G G gβiη A H , and the energy demand on 

the energy demand during the day i , iL :  
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  (5) 

 
According to equation (4), the B  probability density 
function is given by equation (6): 
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where 0p  and fp  are, respectively, the probability of an 

empty  0B   and full  UB C  battery and  0δ

and  Uδ C  represent the Dirac deltas centred on the 

possible extreme energy levels of the battery and  g B  is 

a continuous function defined between the physical limits 

of the battery, 0  and UC . In order to automatize the 
process and dividing the dominium of the  f B  function, 

 0, UC , into Bn  intervals of equal length, the probability 

of B  belonging to an interval  1,2,3,..., Bk k n  is 

given by Bkp .  

 
As explained in the previous paper, this probability 
depends on: 

 The relation between 
gH 

 and this variable in a 

previous day,  1g iH   : this relation can be 

estimated following the method proposed by Aguiar 

[11] for the relation between giH  and  1g iH   but 

recalculating the limits and lengths of the gH   

class intervals as a function of the tilt angle, β  

[2,3]. 
 The geometrical area correction factors, 

 , ,m j k q , that represents the probability of '
iB  

being included in its j  interval when 1iB   and iE  

belongs to the k  and q intervals respectively. This 

correction factors are based on equation (5) and the 

geometrical representation of 1iB  and iE .  

 The E  probability conditioned to the B  

occurrence in the previous day,  p q k : Due to 

the fact that the state of the battery, B , depends on 
the net energy gain, E , both variables are 
probabilistic interdependent and the E  probability 
conditioned to the B  occurrence in the previous day 
is needed.From Bayes theorem, this conditioned 

probability,  p q k , is given by equation (7) 
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where  Ap q r  is identified with the qra  element of 

the Markov transition matrix, given by Aguiar [11], and 
represents the probability of the solar radiation changing 
from a q  state in a particular day to a state r  in the 

following day. 
 
Taking into account all these dependences, equation (8) 
provides the probability of 'B  belonging to a j  interval 

in a day i : 
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From these probabilities and taking into account that the 

0j   interval of 'B  represents a situation of empty 

batteries, that is, a deficit, 
id , the LLP  can be 

calculated as the ratio of the sum of the expected deficits, 
id ,for a number of days to the sum of demands, iL  : 

 
365

1
365

1

i

i

i

i

d
LLP

L









  (9) 

 
In this paper, this novel method proposed is applied to an 
example of SAPV sizing problem in order to describe how 

https://doi.org/10.24084/repqj14.383 532 RE&PQJ, No.14, May 2016



to apply the method and to point out its main features and 
advantages. 
 
2. Mathematical method to a study 
application of the case 
 
The methodology described is applied to the sizing 
example proposed by Posadillo and López [3] for a 
photovoltaic installation with monthly variable demands 
and panel inclinations. Specifically, it is a 12 V 
photovoltaic installation located in Cordoba (Spain) 
(=37.85ºN; Lon=4.48º W), with a three annual position 
solar traking. It must satisfy the daily demands listed in 
Table 1. This demand profile matches a constant monthly 
demand but a variable seasonal load which could be the 
representative profile of a Mediterranean farm. 
 
Table 1. Monthly loads and collector inclinations for the sizing 

method application example mean clearness indexes for Cordoba 
(Spain). 

Month L (kWh/day) (degree) KT 

January 3 45 0.46

February 4 45 0.51

March 4 45 0.50

Aril 5 30 0.49

May 8 20 0.48

June 9 20 0.59

July 9 20 0.64

August 9 20 0.64
September 5 30 0.58

October 5 30 0.49

November 5 45 0.46

December 3 45 0.42

 
As a starting point, a photovoltaic installation consisted of 
20 modules of 80 Wp with a maximum power point 
traking and 30 Pb-acid accumulator cell batteries system 
of 600 Ah, 2V and a discharge depth of 50% is analysed. 

Accordingly, the effective area of the installation, G GA  , 

will be given by equation (9):  
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and the battery useful storage capacity will be given by 
equation (10): 
 

0.5 30 2 600 3600 ( / ) 64800 000 18UC V Ah s h J kWh      
 (10) 
 

Once UC  and G GA   have been calculated, it is necessary 

to determine the extreme values of the subintervals 
considered for the variables involved in the study, that is, 
B , 'B  y E .  
 

The method presented considered that the variation of E  
can be described as a Markov process equal to the one of 

Aguiar [11]. Thus, the extreme values of the E  variable, 
that according to equation (5) depend on the extreme 
values of gβH , can be estimated from Aguiar matrixes 

that depend, in turn, on the typical clearness indexes of the 
emplacement. In that way, for the example analysed, the 
Aguiar matrix corresponding to each month will be 
determined by the typical clearness indexes of Cordoba 
listed in table 1 
 
From these clearness indexes and the suitable Aguiar 
matrix, it is possible to determine, for each month, the 
minimum and maximum values of the dominium of the 

variable E , that is, minE  and maxE  respectively (table 

2). In addition, in order to use the probability transition 
values of Aguiar [11], it is necessary to divide the 

dominium of E  into 10 intervals. According to that, table 

3 shows, together with minE and maxE , the nine 

intermediate values, denoted by the subindex q , that 

divide the dominium of E  into intervals. 
 
Table 2. Frontier values, in kWh, of the intervals considered for 

the variable E . 

 
On the other hand, table 3 shows the intervals of the 
variables B and 'B , represented by the indexes k  and j  

respectively. These intervals do not depend on the month 
and remain constant along the year. 
 
To start the recursive method, as Aguiar proposes in his 
method [11], the probability density function for the first 
day is considered known. Specifically, the batteries are 
supposed to be full in the first day. According to that, the 
probability of the 11k   interval of B  is equal to the 
unit whereas the probability of the rest of the intervals is 
considered null. On the other hand, since information of 
the previous days is not available, the matrix C , 

consisted of the elements  kqC p q k  that represent 

M minE 1E
 2E 3E 4E

 5E
 6E

 7E
 8E 9E maxE

 

Jan 
-2.67 -2.22 -1.72 -1.12 -0.42 0.48 1.62 3.01 4.60 6.21 7.55 

Feb 
-3.55 -2.95 -2.30 -1.58 -0.76 0.23 1.43 2.84 4.42 6.02 7.39 

Mar 
-3.42 -2.64 -1.83 -0.96 -0.02 1.03 2.22 3.57 5.03 6.50 7.82 

Apr 
-4.25 -3.21 -2.17 -1.10 -0.01 1.12 2.30 3.54 4.81 6.09 7.32 

May 
-7.13 -5.92 -4.72 -3.52 -2.31 -1.10 0.11 1.33 2.55 3.77 4.98 

Jun 
-8.50 -7.10 -5.71 -4.32 -2.94 -1.58 -0.24 1.09 2.40 3.72 5.05 

Jul 
-8.07 -6.66 -5.26 -3.85 -2.46 -1.07 0.30 1.67 3.04 4.42 5.79 

Aug 
-8.15 -6.87 -5.58 -4.27 -2.95 -1.60 -0.22 1.19 2.60 3.97 5.35 

Sep 
-4.63 -3.62 -2.59 -1.52 -0.39 0.82 2.14 3.56 5.05 6.48 7.87 

Oct 
-4.48 -3.76 -3.02 -2.23 -1.36 -0.39 0.72 1.98 3.36 4.74 5.98 

Nov 
-4.64 -4.14 -3.60 -2.97 -2.23 -1.30 -0.15 1.25 2.83 4.44 5.79 

Dec 
-2.66 -2.28 -1.87 -1.38 -0.80 -0.07 0.84 1.96 3.29 4.74 6.16 
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the probability of E conditioned to B  (equation 7), is 
initialized for the day zero as a uniform probability 

distribution   1 10kqC p q k  . 

 
Table 3. Frontier values, in kWh, of the intervals considered for 

the variables B and 'B . 

'B Intervals B Intervals 

j Index Lower 
limit 

Upper 
limit 

k  
Index 

Lower 
limit 

Upper
limit 

0 -∞ 0.0 0 0.0 0.0 

1 0.0 1.8 1 0.0 1.8 

2 1.8 3.6 2 1.8 3.6 

3 3.6 5.4 3 3.6 5.4 

4 5.4 7.2 4 5.4 7.2 

5 7.2 9.0 5 7.2 9.0 

6 9.0 10.8 6 9.0 10.8 

7 10.8 12.6 7 10.8 12.6 

8 12.6 14.4 8 12.6 14.4 

9 14.4 16.2 9 14.4 16.2 

10 16.2 18.0 10 16.2 18.0 

11 18.0 ∞ 11 18.0 18.0 

 
Figure 1 explains the basis of the geometrical estimation 
of the variable 'B  as the sum of the two stochastic 

variables B  and E  (equation 5). In this figure, the 
occurrence probabilities of both addends for the first day, 

that is, 0B and 1E ,are represented. The intersection 

between their interval frontiers sets up the rectangular 

clusters the plane  0 1,B E  is initially divided into. All 

this clusters are rectangular except for the ones 

corresponding to 0 0B   and 0 UB C  that are lineal 

segments. However, in order to generalize and systematize 
the process, they can be considered as rectangles of null 
height. As hypothesis, it is assumed that occurrence 
probability in a rectangular cluster is uniformly distributed 
inside it. 
 
Once the plane  0 1,B E  has been defined, it is possible to 

obtain 'B  as the geometrical sum of B and E . In that 
way, the probability of each sub-interval j  of the variable 

'B  will be given by the sum of the probabilities of all the 
polygons between the two oblique lines that demarcate the 
sub-interval. These polygons depend on ( , , )m j k q  that 

represents the part of points of the whole rectangular 
cluster (with indexes k and q ) whose coordinate sum is 

included in the interval j  of 'B (figure 2). 

 
 

 

 
Fig. 1. Probability distributions for the variables B and E in the first day of the installation It can be seen the dependence of the 

probabililities of E on interval k 
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Fig. 2. Geometrical Estimation of the Probability distributions for the variables 'B as the sum of theProbability distributions for the 

variables B and E in a generic day of the installation (probabilities on the rectangle has been multiplied by 100 in order to a better 
representation). 

 
  
On the other hand, figure 2 shows the geometrical 
interpretation of equation 8 for the estimation of the 
probability corresponding to each interval j  of the 

variable 'B . This probability is obtained as the 
accumulative recount of the probabilistic mass of all the 
polygons included between the oblique lines that delimit 
the interval j  of the variable 'B . 

 
Once the probabilities of the variable 'B  have been 
computed for the first day of the installation, the second 
day is simulated. For that purpose, the probabilities of 'B  
on the previous day become the probabilities of the 
variable B  for this second day (equation 4). As far as the 
probabilities of each sub-interval of the variable E  are 
concerned, as explained before, they will be conditioned 
to the values of this variable in the previous day. Once 
more, from the probabilities of each sub-interval of the 
variables B and E , it is possible to estimate the 
probabilities of the different sub-intervals of the variable 

'B  for the second day, following the same procedure that 
for the first one. 
 
In a similar and recursive way, for any day i , it is 
possible to determine the probabilities of the different sub-
intervals considered for the variable 'B  related to the 

battery state. Figure 4 shows the sum of the variables B  
and E  for an intermediate day of the simulation process. 

Values of 'B  corresponding to the sub-interval 0j  , 

that is, negative values of this variable, represent possible 
deficits and, consequently, the probability of a system 
failure in the day i . The probability associated to the sub-
interval 11j   of the variable 'B represents the probability 

of full batteries in the day i .  
 
Thus, repeating this recursive method, it is possible to 
obtain not only the annual loss of load probability of the 

system, LLP , or the number of failures, f , but also the 

distribution of these values along the year. Figures 3 and 4 

show respectively the LLP  and f  monthly distributions 

for the example previously described. These distributions 
computed by means of the method proposed in this paper 
are compared with the ones obtained by classical 
simulation methods [1] applied for a 20 year period of 
time [3]. Thus, from the information of figures 3 and 4, 
any user would be aware of the monthly restrictions of his 
energy demand. 
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Fig.3.LLP monthly distributions for the 20 module (of 80 Wp) 

and 30 vase solution. The distributions calculated by the method 
presented in the paper are compared with the ones obtained by 

simulation. 
 

 
Fig.4.f monthly distributions for the 20 module (of 80 Wp) and 
30 vase solution. The distributions calculated by the method 

presented in the paper are compared with the ones obtained by 
simulation. 

 
3. Conclusions 
 
In this paper, by means of an application example, the 
usefulness of the method presented by the authors in [12]. 
According to the results, it is possible to conclude that this 
method estimate the LLP  value and the number of 

failures, f , for a stand-alone photovoltaic installation 

quickly and in an analytic and precise way. Furthermore, 
since it is a method based on the estimation of frequency 
distributions without resorting to simulation techniques, 
its results do not entail the uncertainty characteristic of 
these techniques. For these reasons, the method could be 
promising for the analytic study of the effects of different 
determining factors on the LLP  value and the number of 
failures, f , not studied till this moment due to their 

complexity, such as: the daily demand changes, solar 
tracking or solar power concentration. 
 

On the other hand, the method proposed is directly 
based on the descriptive models of Aguiar [11] for the 
solar radiation prediction. Thus, these method 
improvements will imply the proposed method 
improvement. In that sense, future works will be aimed 
towards the analytic study of the hourly balance. 
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