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Abstract. 
In  this work  the  dynamics  of  a  parametric  pendulums  system 
has  been  studied with  a  view  to  its  application  for  sea 
wave’s  energy extraction. The idea is based on the conversion of 
the oscillatory motion of the waves into rotation of the 
pendulums. The system approximating a floating structure with 
two pendulums mounted on it has been modelled and analyzed. 
In the first stage of the study the general dynamics of the 
parametric pendulums has been investigated numerically and 
experimentally. The focus lies on synchronized rotational 
solutions, representing a most energetically favourable state of 
motion. The target state is to achieve a synchronized counter 
rotation of both pendulums. The controlling strategy, with the 
aim of initiating and maintaining the desired response, has been 
developed and verified numerically and experimentally. Different 
methods based on the delayed-feedback control have been 
suggested. The numerical and experimental results showing the 
difference in the system dynamics with and without control have 
been presented. Finally the energy extraction from the system has 
been simulated numerically and energy extraction control has 
been discussed. 
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1. Introduction

The need to search for new alternative energy sources has 
been getting stronger in recent decades. The ocean waters 
despite being main  solar  energy  collectors  on  earth,  sill 
remain  a  highly  unexplored  energy  source.  Number of 
different  technologies  based  on  utilizing  tides,  oceans 
thermal  energy  and  wave  energy  are  being  deployed 
however  there  is  still  need  for  further  research  in  this 
area.  

The motivation of this study is the idea of using the 
dynamics of the parametric pendulums for wave energy 
extraction. This concept has been proposed by 
Wiercigroch  [1]  and  is  based  on  the  conversion  of  the 
kinetic energy of sea waves into rotational motion of the 
pendulum,  mounted  on  the  floating  pontoon. The 

rotational motion of the single pendulum regarding this 
application has been studied in [2], [3]. The working 
principle of the parametric pendulum has been illustrated 
at the pictures below (Fig.1). The pivot point is subjected 
to harmonic excitation in vertical direction (Fig.1a). A 
parametric pendulum experiences different types of 
motion, which can be represented on the phase plane 
(Fig.1b). The region of oscillatory solutions (closed loops 
denoted by (1)) is bounded by a critical motion described 
by the separatrices (2).  The response outside this  region 
is  denoted  by  (3)  and  corresponds  to  the rotation, 
which is of main interest for the energy extraction 
purposes. For stable rotations the solution on the phase 
plane needs to lie sufficiently far from the separatrix to 
ensure that the energy dissipation will not cause  the 
pendulum  to  go  back  to  the  potential  well inside the 
region bounded by separatrices. Once the pendulum 
rotates its energy can be extracted directly from the 
rotating shaft at the pivot point, which will be the scope 
of the following studies. 

Fig.1 Working principle of parametrically-excited pendulum. 
Schematic representation (a) and phase plane showing different 
responses in terms of pendulum displacemnet and velocity (b). 

A floating structure containing the pendulums system, 
would be subjected not only to the excitation originating 
from the sea waves but also reaction forces related to the 
rotating pendulum acting on the pontoon. The objective 
of this project is to design a structure which would utilize 
these interactions for increasing the stability of the 
pontoon and rotational motion, rather than suppressing 
them. It can be achieved by employing the set of 

(a) (b) 
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pendulums instead of a single one. To compensate for the 
effect, which a single rotating mass exerts on the pontoon 
the system needs to be composed of multiple counter 
rotating pendulums. Due to the stabilizing effect the 
synchronization of the rotating pendulums is considered to 
be the target state for the energy extraction. In this initial 
study the system consisting of two pendulums will be 
considered. This will provide an insight into dynamical 
behaviour of more complex system. 
 
2.   Physical and mathematical model  

 
The first step towards understanding the dynamics of the 
two pendulums system includes building physical and 
mathematical model. The schematic representation of the 
system considered is shown in the Figure 2a. It consists of 
two pendulums mounted on the commonly excited flexible 
supporting structure. In the fist stage of the study the 
system has been treated on the plane. It has been modelled  
as  a  four-degrees  of  freedom system,  where  x  and  y  
denote  the  displacement  of  the structure  in  horizontal  
and  vertical  direction,  θ1  and  θ2  describe  the  angular  
displacement  form  the  downward zero position. A 
synchronized state can be achieved due to  coupling  effect  
of  the  elastic  base,  capable  of transmitting  vibrations  
between  the  pendulums. The mass of the pendulums is 
concentrated mainly on the bob and therfore treated as a 
point mass. The damping effect of the base and on the 
shaft of the pendulum has been modeled as a viscous 
damping. The harmonic excitation on the base has been 
assumed, giving a good approximation of the wave’s 
motion. The non-dimensional equations of motion for the 
two rotational degrees of freedom are given by: 
 
���� � �������� � 	1 � �������� � ����� � �� � �� � 0,  

 ���� � �������� � 	1 � �������� � ����� � �� � �� � 0, 
 

where  ui  and  ei  (i=1,2)  represent  control  and  resistive 
torque terms respectively. The parametric excitation terms 
x’’ , y’’ included in the above equations are described by the 
equation of motion of the flexible supporting structure: 

		� ′′ � ��	� ′ � ��� � 
 

��	��′′����� � ��′����� � ��′′����� � ��′������ � 0, 
 
�′′ � ����′ � ��� sin	�#�$ � ���� � �� cos	�#�$ �   

         
��	��′′���� � ��′������ � ��′′���� � ��′������� � 0, 

 
where all of  the system parameters are nondimesional.  γx 

and γy are the damping coefficients of the base in 
horizontal and vertical direction respectively, αx and αy are 
the stiffness coefficients, py is the forcing amplitude, ω is 
the  forcing frequency, τ is the time, a is a mass ratio. All 
of the system parameters and variables have been rescaled 
with respect to the natural frequency of the pendulums. 
The  nondimensional form of the system equations allows 
comparison between different models. The result form the 
small scale experiment can easily be transferred on the real 
size installation. By changing the length of the pendulum 
and its natural frequency in this way, the dynamic response 

of the system can be adjusted to the different forcing 
conditions (different wavelengths). The height or 
frequency of the sea waves cannot be adjusted. However 
once the optimal forcing parameters range for the 
nondimensional system is determined, the system 
parameters can be adjusted to preserve the desired 
dynamical properties for the given sea waves conditions. 
 

 
 
 
Fig. 2.  Physical model of the two parametric pendulums system 
(a)  and the  corresponding  experimental  set-up  (b). 

 
3. Numerical and experimental results 

 
The dynamics of the coupled pendulums system under 
harmonic excitation has been studied numerically and 
experimentally for different levels of forcing. First the 
system without any control algorithm has been examined.  
Secondly the controlling algorithm for maintaining 
synchronized rotation has been applied. The experimental 
studies have been carried out in the Dynamics Laboratory 
at the University of Aberdeen. The harmonic excitation 
of the system has been provided by the electromagnetic 
shaker. In the first stage of the study excitation acting 
only in the vertical plane has been considered (Fig.2a). 
The two pendulums have been fixed on the shaker as 
shown in the figure 2b and the response of the system has 
been observed for different initial conditions and varying 
frequency and amplitude.  
 
A.  System dynamics without control 
 
Without control the pendulums can experience several 
types of dynamic behaviour. For constant amplitude and 
frequency of forcing different synchronized solutions 
have been found including equilibrium points, 
oscillations, rotations, and rotations of one pendulum 
synchronized in phase with the oscillations of the second 
one (Fig. 3). Similar results have been obtained in the 
experimental studies (Fig. 4). Rotational solutions have 
been found in a wide range of forcing parameters (Fig.5). 
Additionally a natural tendency of the system to 
synchronize has been observed. Once the pendulums 
rotate the phase difference between them diminishes as 
the transient time elapses approaching one of the two 
synchronized solutions: in phase or in antiphase, 
depending on the initial conditions. However very 
specific initial conditions are necessary to initiate the 
rotational motion (Fig.7). Consequently a robust control 
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algorithm is necessary to both start up the rotational 
motion and then to maintain it. 

 
 
Fig. 3 Numerical results showing rotational and oscillatory orbit 
for pendulum 1 and 2 respectively (a) and synchronized 
oscillation of both pendulums (b). 
 

 
Fig. 4 Experimentally observed synchronized counter rotation of 
the pendulums for ω=2, p=0,07.  Phase plane showing the 
velocity of the pendulum against its displacement for each 
revolution (a) and displacement of the pendulum 2 as a function 
of pendulum 1 displacement (b), perfect correlation indicates 
complete synchornization. 
 

 
Fig. 5 Experimentally determined lower boundary of rotational 
motion in the excitation parameter space. The sudden jump has 
been observed around ω=2.7, which corresponds to the natural 
frequency of the body of the shaker and is possibly the result of 
stronger pendulum-shaker interactions in this parameter region.  

 
 
B.  Response with the control 
 
A target state for wave energy extraction requires 
rotational motion to be maintained irrespective of the 
changes in excitation. The control algorithm needs to be 
applied to both pendulums to ensure they synchronized 
rotational response. In the experimental study the 
controlling action is performed by two servo-motor 
encoders attached to the pendulums shafts, working 
alternating as a motor, to provide the torque necessary to 
initiate rotational motion or to synchronize the two 

pendulums. Once the motion is stabilized it can act as a 
generator extracting energy form the rotating shaft.  
 

 
 
Fig. 6.  Basins of attraction of the pendulum without (a) and 
with (b) control, where green marks the points corresponding to 
the initial conditions resulting in oscillations, blue in clockwise 
and red in anticlockwise rotation. 
 
After investigating several control techniques for 
parametric pendulum the delayed- feedback method has 
proved to be most efficient and robust. In this method the 
system can be stabilized by a feedback perturbation 
proportional to the difference between the present and a 
delayed state of the system [6], like the difference 
between velocities or angular displacements. During this 
study it has been observed that when applying two 
independent rotation controllers to two pendulums, their 
responses would naturally synchronize. Therefore the 
separate controlling signals supplied to pendulum one 
and two are given by: 
 

�' � (	�)���*+ 	,�$		�'	, � #� � �'	,� � 2.� 
 
where  k  is  the  proportionality  constant,  �+ i (t), θi (t) 
and  �'	, � #� are  the  current  velocity,  current  and    
delayed angular position of  the i-th pendulum. The delay 
time		#� is equal to the period of the desired periodic 
orbit, which for the period one rotations, being the 
dominant rotational response for the system considered, it 
can be determined from the period of the excitation. This 
can be extracted form the readings of the accelerometer 
measuring the oscillations of the pendulum base. If the 
pednlum rotates exactly with the period of excitation the 
angular displacement will increase 2π for each revolution 
and at the same time the control variable ui will go to 
zero. The experimental and numerical result of applying 
two separate control signals, given by eqation (3) to 
initate and mainataine rotational motion are shown in the 
figures 9 and 10. 
 
Another approach to synchronizing and controlling the 
system is to make use of the interactions between the two 
pendulums and use the information about the state of one 
of them as a control input for the second one. The idea is  
to apply  the delayed-feedback control  to maintain  the 
rotation  of  one  of  the  pendulums  and  synchronize  
the second  one  with  the  first  one.  The velocity 
difference between the driving and driven pendulum has 
been used as a second control signal. By this control 
algorithm the pendulums are coupled according to the 
master-slave scheme, where the ‘slave’ pendulum is 
forced to synchronize with the ‘master’. 

(a) (b) 

(b) (a) 
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where 23 is the synchronization control variable, 43 is the 
proportionality constant. The control variable will become 
zero when the instantaneous velocities of the pendulums 
will be exactly opposite. The control signal described by 
equation (3) is supplied to pendulum one, playing a role of 
the ‘master’ and while the control signal (4) is driving the 
second ‘slave’ pendulum. The numerical results of 
application of this type of controller are shown at the 
figure 8. 
 

 

  
Fig.7 Experimental results showing the difference in the response 
of the system with and without control algorithm, while the 
forcing frequency is being changed from 3Hz down to 1Hz.  (a) 
displacements with no control, (b) displacements with control, (c) 
forcing frequency, (d) control signals, correlation between the 
displacements of the two pendulums without (e) and with 
control(f). 
 
The two functions of the control include initiating the 
rotational motion irrespective of the initial conditions and 
in case of sudden changes in the excitation ensuring that 
the motion is sustained and synchronized. Fig.7 shows the 
numerical result of the control application on the basins of 
attractions structure, the rotational motion can be initiated 
form every point on the phase plane. Fig.8 shows the 
experimental results of applying a control algorithm to 
maintain the synchronized rotation, while the excitation 
frequency is being varied. The synchronized rotation has 
been successfully maintained. 
 

Fig. 8 Numerical time histories showing the displacement, 
resistive torques corresponding to the energy extraction and 
controlling terms versus time, while  initiating  and maintaining 
synchronized rotational motion of two pendulums with two 
identical  controllers. 
 

 
Fig. 9 Numerical time histories showing the displacement, 
resistive torques corresponding to the energy extraction and 
controlling terms versus time, when using the second 
synchronization control method. 

 
4. Energy extraction 
 
To maximize the amount of energy which can be 
extracted in each forcing cycle, without destroying 
rotational motion the energy extraction function 
proportional to the velocity of the pendulum has been 
proposed. The resistive torque applied to each pendulum 
shaft is given by: 

 
�' � 5' 	�+'	,� 

 
where Ei is the energy extraction coefficient. 
Determination of the optimal value of Ei is a crucial task. 
The maximum Ei which does not destroy rotational 
motion depends on the forcing parameters (ω,p). Figure 
11 shows a determined numerically surface of maximum 
energy extraction coefficient depending on the forcing 
parameters.  
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Fig. 10 Numerically determined Ei,max depending on the 
excitation parameters. 

 
 
Fig. 11 Numerically determined maximum extracted power Pi 
depending on the excitation parameters. 
 
The power which can be extracted is a product of the 
resistive torque and pendulum velocity and expressed in 
nondimensional coordinates is equal to:  
 

67 � 87�+7	,� � 97	�+7	,�: 
 
Pi strongly depends on the velocity of the pendulum. 
Therefore using rotational motion, characterised by 
significantly higher velocities than in oscillatory mode 
(Figure 3a) is more efficient than using the energy of 
oscillations. Additionally, it has been found in the 
experimental studies, that the friction related energy losses 
on the pendulum shaft are much higher for the oscillations 
around zero position than for the continues rotational 
motion [4]. 
 
The amount of energy which can be extracted needs to be 
controlled, using the information about the excitation, 
extracted from the base motion and the response of the 
pendulum. The variable ui can be used as a control input, 
so that the energy extraction occurs when the motion is 
already stabilized. So that the resistive torque applied to 
the shaft is given by: 

 
�' � 5' 		�, ���+'	,��';	 

 
Where  

si =< 1				=�>		�' ≅ 0;
	0				=�>		�' @ 0;	 

 
 
5. Closing remarks 
 
In  this  study  it  has  been  found  that  the  synchronized 
rotation of a two pendulums system is a stable motion in 
a  wide  range  of  forcing  parameters. Moreover this 
motion can be successfully controlled with a low energy 
input. Alternative control techniques have been presented 
and assessing their efficiency for more complex forcing 
conditions will be the scope of further study. It has been 
shown that the synchronized rotational motion is still 
preserved when applying additional resistive torque on 
the shaft of the pendulum. The aim of the further research 
is to develop an energy extraction controller, which 
would allow extracting the energy surplus form the 
rotating pendulums while still maintaining their rotation. 
To maximize the energy output over one rotation the 
extraction term should vary periodically and be 
proportional to the angular velocity of the pendulum. The 
behaviour of the system with the proportional energy 
extraction term included has been simulated numerically 
and will be the studied within further experimental 
studies. The following step of the experiments includes 
moving studying the behaviour of the system in a wave 
tank. 
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