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Abstract 
Line-commutated current converters operated in electrical 
power systems will work asymmetrically, if the system is not 
balanced. This asymmetrical operation causes 
non-characteristic harmonics in the currents and therefore a 
higher distortion level. As a high distortion level is always 
disadvantageous, it is worthwhile to find appropriate methods 
to lower the distortion level by reducing the amplitudes of these 
non-characteristic harmonics. 
In this paper, three-phase thyristor converters operated in 
systems with unbalanced AC-line short-circuit impedances are 
investigated. To achieve a competent and well-grounded 
understanding of the problem a suitable method of calculation 
has been developed. This method firstly offers the opportunity 
to calculate the operation of line-commutated current converters 
in an unbalanced three-phase system. Furthermore it offers the 
opportunity to optimize the operation of the unbalanced system. 
This optimization is done by balancing the systems operation 
and reducing the amplitudes of the non-characteristic harmonics 
using asymmetrical firing angles. 
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1. Introduction 
 
Electrical three-phase power systems are never perfectly 
balanced. These unbalances can be results of an 
unbalanced mains voltage, unbalanced loads or 
unbalanced AC-line short-circuit impedances. The latter 
case with unbalanced short-circuit impedances is 
investigated in this paper. An unbalance of this kind can 
be caused by faulty transmission lines or overhead 
transmission lines without transposition for example. 
Current converters operated in unbalanced electrical 
systems will generally work asymmetrically. This is also 
valid for similar electrical power equipment, like 
FACTS, HVDC converters and current limiters based on 
power converters, when this equipment is operated in an 
unbalanced electrical system. In all of these cases this 
asymmetrical operation firstly introduces the appearance  

 
of non-characteristic harmonics. These non-characteristic 
harmonics lead to a distortion level, higher than the 
distortion occurring in case of a balanced operation of the 
system [1, 2]. As a high distortion level is always 
disadvantageous, both for the converter and the power 
system, a method to keep the distortion as low as possible 
is desirable. 
For a given system the impedance unbalance is fixed and 
not changeable. So the reduction of the distortion level 
can only be done by reducing the amplitudes of the 
non-characteristic harmonics. With controllable current 
converters, such as thyristor converters, this reduction of 
the distortion level can be realized by balancing the 
current converter’s operation using a control strategy 
with unsymmetrical firing angles [3, 4]. This makes the 
operation of a current converter in an unbalanced 
electrical power system more balanced and reduces the 
THD. 
The aim is now to calculate optimal firing angles for a 
given system with a given impedance unbalance. Due to 
the unbalance, these optimal firing angels will be 
asymmetrical. This means for example for a six-pulse 
thyristor bridge in asymmetrical operation the spacing 
between two optimal firing impulses is not 60° like in 
normal symmetrical operation. 
This possibility with unsymmetrical firing angels has 
already been shown for forced-commutated converters 
both with an unbalanced mains voltage and with 
unbalanced AC-line impedances [5, 6] and for 
line-commutated power converters with an unbalanced 
mains voltage [7, 8]. A first approach has been shown for 
line-commutated converters with a simplified unbalance 
of the AC-lines short-circuit impedance [9]. In this work, 
a generalized approach is presented, wherein the 
simplifications of [9] do not have to be complied with. 
Hence the unbalance of the AC-lines short-circuit 
impedance can be of any kind and practical problems can 
be investigated more realistically. 
In calculating the operation of current converters it is 
common to assume all impedances to be lossless and the 
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direct current to be ideal smooth without any ripple. 
These simplifications do not have to be applied here, as 
an approach with differential equations is used in this 
paper. Because of the calculation with differential 
equations no requirements to the AC-line and DC 
impedances have to be complied with, except of linearity. 
In particular, this means that the AC-line impedance does 
not have to be negligible and may have a resistive part. 
The DC-network may have a non-infinite reactance, 
which corresponds to a ripple-afflicted direct current. 
Capacitive elements can be included both on the AC and 
DC side of the converter, which introduces the possibility 
to take filter into account. 
In the following explanations we consider an electrical 
three-phase system with an unbalanced AC-lines 
short-circuit impedance. This unbalance is given and 
fixed and therefore not changeable. In this system a 
current converter is operated. From this current converter 
we know the DC-voltage and the desired operation point 
(e.g. a needed value of the direct current to charge the 
DC voltage source). For this converter system it will be 
shown how to derive optimal firing angles. These optimal 
firing angles will simultaneously fulfil the conditions of 
the desired operating point and minimize the distortion 
caused by non-characteristic harmonics. 
 
2. The Investigated System 
 
Fig. 1 shows the schematic diagram of the analysed 
system. It consists of a six-pulse line-commutated current 
converter with an impedance and a DC voltage source at 
its DC terminals. 

 
Fig. 1.  Schematic diagram of the analysed system 

 
The converter is fed by a symmetrical sinusoidal 
three-phase mains voltage up R,S,T . The AC-line 
short-circuit impedances are of ohmic-inductive type and 
are unbalanced 

 ,≠ ≠R S TR R R  (1) 

 .R S TL L L≠ ≠  (2) 

The following demonstration will show a rectifier’s 
operation of the current converter, for example charging 
the battery of an EV or feeding a DC railroad system. 
Though, the presented method is applicable to an 
inverter’s operation, too. This offers the opportunity to 
take FACTS and HVDC systems into account. In case of 
an inverter’s operation of the current converter only the 
DC voltage source Ud has to be included in the 
calculations with its inversed sign. 

3. Calculation with Space-Phasors 
 
For easier analysis, the system is transformed into the 
image range of space-phasors. This transformation is 
defined for any three-phase system vR(ω t), vS(ω t), vT (ωt) 

 ( ) ( ) ( ) ( )( )22

3 R S Tv t v t a v t a v tω ω ω ω= + +  (3) 

with a=ej2π / 3. Eq. (3) shows, the space-phasor is by 
definition a complex time-characteristic with a real part 
vα(ω t) and an imaginary part vβ(ω t). The three real 
time-characteristics vR,S,T (ω t) are mapped into this one 
complex time-characteristic v(ω t). A zero component can 
be omitted here, because in the analysed system the sum 
of all currents is always zero. 
As the system will be analyzed with differential 
equations and to achieve manageable solution statements 
of the transient parts of the differential equations, a time 
reference is useful. This can be done via a phase angle γ, 
which is very similar to the well-known delay angle in 
common converter theory. In our case γ is the delay 
between the maximum of the line-voltage upR and the 
firing of thyristor 3 at ωt=0. With this definition the 
effective mains voltages are 

 ( ) ( ), , , ,
ˆ cospR S T p R S Tu t U tω ω γ ϕ= ⋅ + +  (4) 

with ϕR=0, ϕ S=–2π/3, ϕT=–4π/3. 
Eq. (4) inserted in eq. (3) leads to a circular shaped 
space-phasor of the mains voltage 

 ( )j

    
ˆ( ) e ( ) j ( ).t

p p p pu t U u t u tω γ

α βω ω ω+= ⋅ = +  (5) 

As eq. (4) shows, the system is excited with sinusoidal 
voltages. Sinusoidal functions are symmetrical by π. So 
the excitation of the converter system is symmetrical by π 
and all currents and voltages of the converter system are 
forced to be at least symmetrical by π. This leads to the 
following condition for every time characteristic of the 
original three-phase system 

 ( )( ) ( ), , , ,2 1 2 .R S T R S Tv t k v t kω π ω π+ + = − +  (6) 

Herein is 0k ∈  and vR,S,T(ωt) stands for the time 
characteristics of currents or voltages. With eq. (6) and 
the asymmetrical short-circuit impedance it is possible to 
show all time-characteristics are exactly symmetrical by 
π. This means for example the direct current of the 
six-pulse converter will not be periodical with 2π/6=60° 
as normal in symmetrical operation. Instead, because of 
the asymmetrical short-circuit impedances, the direct 
current will be periodical with π=180°. 
As a full 50Hz-period corresponds to an angle of 
2π=360° two of these 180° DC-periods occur during one 
50Hz-period. So this periodicity with π is called 
two-pulse type operation mode. This two-pulse type 
operation mode is the asymmetrical operation of the 
converter investigated in this work. 
During one two-pulse period of the duration π there are 
six conducting states of the current converter. Table I 
shows the active thyristors during these states. 
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Table I. - Conducting states of one two-pulse period 

Conducting state Active thyristors 
z1             1, 2, and 3 
z2             2 and 3 
z3             2, 3 and 4 
z4             3 and 4 
z5             3, 4 and 5 
z6             4 and 5 

 
Fig. 2 shows the conducting states and the time intervals 
in which they are valid. Herein for example β1 is the 
angle in time thyristor 1 stops conducting, which 
corresponds to the end of commutation. In asymmetrical 
operation the six states will generally differ in their 
duration. 
 
 
 
 
 
 
 

Fig. 2.  Conducting states and angles in time during one 
two-pulse period 

 
To calculate the asymmetrical operation in the range of 
space-phasors, the system’s space-phasor description has 
to be derived. This has to be done separately for every 
conducting state of table I. For example, in conducting 
state z1 the currents iR and iS are positive with respect to 
fig. 1, while iT is negative. After inserting this in the 
space-phasor equation (3) and considering the two mesh 
equations of fig. 1 in state z1, one gets the space-phasor 
network for state z1. It is shown in fig. 3. 
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Fig. 3.  Space-phasor network for conducting state z1 
 
The space-phasor networks for the other five conducting 
states are different from each other, but are derived 
similarly to fig. 3. 
 
4. Description in the State-Space 
 
The two meshes in fig. 3 lead to two differential 
equations for state z1 

 ( )1 , , , , , , , ,

d
( ) f ( ), ( ), , , ,

d p d R S T d R S T di t i t u t U R L
t α α α β α βω ω ω

ω
= (7) 

 ( )1 , , , , , , , ,

d
( ) f ( ), ( ), , , .

d p d R S T d R S T di t i t u t U R L
t β β α β α βω ω ω

ω
= (8) 

The other two conducting states with three conducting 
thyristors (z3 and z5) lead to similar equations. In the case 
of two conducting thyristors (states z2, z4 and z6) the 
space-phasor network does not contain a node. So, for all 
conducting states with only two active thyristors only one 
equation in the form of (8) is needed. This leads to a 
description with space vectors for all states with three 
active thyristors 

 1,3,5 1,3,5

1,3,5

1,3,5 1,3,5

( )
,

( )

i t z

i t z
α α

β β

ω

ω
= =
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

z  (9) 

while all states with two active thyristors contain only 
one state variable 

 ( )2,4,6 2,4,6 2,4,6i t zβ ω= =z . (10) 

With eq. (7) to (10) for every conducting state of table I a 
state space description can be stated 

 1,...,6 1,...,6 1,...,6  1,...,6  1,...,6

d
. 

d
p

p d d

p

u
U

ut
α

βω
= ⋅ + ⋅ + ⋅

⎡ ⎤
⎢ ⎥
⎣ ⎦

z A z B b (11) 

As eq. (11) is valid for all conducting states, altogether 
one gets six equations of this form. In the following the 
indices 1, ..., 6 of the conducting states are omitted. 
Without further distinction the matrices A and Bp and the 
vector bd are different for every conducting state. 
To solve the problem of eq. (11) steady state (index s) 
and transient/homogeneous (index h) solution statements 
have to be set up in common ways. The steady-state AC 
solutions zsAC are stated with complex AC analysis, the 
steady-state DC solutions zsDC with Ohm’s law. 

 [ ] 1 j
ˆ

Re j e ,ˆ
p t

sAC p

p

U

U
α ω

β

−
= − − ⋅ ⋅ ⋅

⎧ ⎡ ⎤ ⎫
⎨ ⎬⎢ ⎥
⎩ ⎣ ⎦ ⎭

z A E B  (12) 

 1 .sDC d dU−= −z A b  (13) 

The transient solution statements are set up with the 
matrix exponential 

 ( )
( )

( )

1 0

0

2 0

1e 0
e .

0 e

p t t
t t

h p t t

ω ω
ω ω

ω ω

−

⋅ − −

−
= ⋅ = ⋅

⎡ ⎤
⎢ ⎥
⎣ ⎦

Az c V V c (14) 

Herein is V the eigenvector-matrix and p are the 
eigenvalues of one conduction state. The vector c 
contains the transient solutions’ initial values. V, p and c 
are different for every conducting state. The start angle 
ωt0 stands for the angle the according conducting state 
begins (see fig. 2). That is ωt0 =ϕ 1 for z3 for example. 
Finally one gets the complete solution statement by 
summation of the separate solution statements 

 .sAC sDC h= + +z z z z  (15) 

The summands of eq. (15) are different for every 
conducting state. 

ϕ 2 

ω t 

z1 

    z4 

    z5 

  z6 

β1 
β2 

β3 

π ω t=0 

ϕ 1 

  z3  z2 
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5. Solution with Continuity Constraints 
 
Now the solution statements for every conducting state 
are known, but there are still some unknowns: All 
conducting states with three active thyristors (z1, z3 and 
z5) contain two initial values of the transient solution 
parts, all conducting states with two active thyristors (z2, 
z4 and z6) contain only one. These nine initial values are 
unknown. Furthermore the commutation stop angles β1, 
β2 and β3 are unknown. To determine these twelve 
unknowns the continuity of the state vectors (see fig. 2 
and eq. (9) and (10)) is used. The state vectors’ elements 
are currents and therefore have to be continuous at every 
change of the conducting state. This is shown here only 
for the first change of the conducting state at ωt =β1 

 
( )
( ) ( )

1 1

1 1 2 1

0 0
.

0 0

z t

z t z t
α

β

ω β

ω β ω β

= −
=

= − = +

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

 (16) 

For the conducting state changes at ϕ 1, β 2, ϕ 2 and β 3 
equations analogue to (16) can be stated. So additionally 
to the two equations of (16) one gets eight more 
continuity equations (two equations per conducting state 
change). As seen in fig. 2, the calculation begins with 
ωt=0 and ends with ωt=π. But because of eq. (6) the state 
vectors reiterate periodically by π and these two last 
conducting state changes at ωt=0 and ωt=π appear like 
only one conducting state change in the calculation  

 
( )

( )
( )
( )

16

16

0 03 0
.

0 00

z tz t
z tz t

α

β

ωω π

ωω π

− = +⋅ = −
=

− = += −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
 (17) 

All in all these six conducting state changes result in 
twelve equations. In these twelve equations the elements 
of the state vectors are substituted with their solution 
statements of eq. (15). For example this substitution in 
the second line of eq. (16) results in 

 
( ) ( )

( ) ( )
2  1 2  2  1

1  1 1  1  1     .
sAC sDC h

sAC sDC h

z t z z t
z t z z tβ β β

ω β ω β
ω β ω β

= + + =
= = + + =

 (18) 

Now for the twelve unknowns twelve equations are stated 
and the problem is solvable [9]. 
 
6. Degrees of Freedom 
 
The angles ϕ 1 and ϕ 2 in fig. 2 define the firing impulses 
of the thyristors 4 and 5. In symmetrical operation these 
angels are always 
 1 260 ,  120 .ϕ ϕ= ° = °  (19) 

In asymmetrical operation these two firing angles are 
degrees of freedom and can be chosen out of a reasonable 
range. This can be for example 

 [ ] [ ]1 255 ; 65 ,  115 ;125 .ϕ ϕ∈ ° ° ∈ ° °  (20) 

These two degrees of freedom are used to optimize the 
asymmetrical operation of the current converter, 
especially to reduce the THD. 
Now, for a given electrical power system with a known 
impedance unbalance and a desired working point of the 
converter (e.g. a needed mean-value of the direct 

current), the problem is solvable for every pair of ϕ 1 and 
ϕ 2 of eq. (20). Every pair leads to the needed mean-value 
of the direct current. But besides that, every pair of ϕ 1 
and ϕ 2 leads to different time-characteristics of the 
AC-line currents. So every working point, defined by a 
pair of ϕ 1 and ϕ 2, leads to a different quality of the 
converter operation. In the following example the THD 
will be used as quality criterion. It will be shown how the 
THD depends on ϕ 1 and ϕ 2 and how the degrees of 
freedom can be used to reduce the THD in asymmetrical 
operation. 
 
7. Calculation of an Example 
 
Considered is a current converter for a 750V DC railroad 
system. The DC-power is 900kW, so we need an 
arithmetical mean value of the direct current of 

  1, 2kA.d meani =  (21) 

The system is supplied by a 10kV/690V transformer with 
a rated power of 1600kVA. The transformer is the major 
part of the system’s short-circuit impedance. The 
system’s overall short-circuit impedance is unbalanced 
because of AC-lines without transposition 

 2,8mΩ,R S TR R R= = =  (22) 

 1,36 18mΩ,R SL Lω ω= = ⋅  (23) 

 18mΩ.TLω =  (24) 

On the DC-side the impedance is 

 100mΩ, / 20.d d dL R L= =  (25) 

With these parameters the shown method of calculation 
can be executed within the range of eq. (20). Fig. 4 shows 
the THD of the AC-line currents within this range; one 
sees it is least distorted for 

 1 260 ,  120,8 .ϕ ϕ= ° = °  (26) 

The THD in this case is 31,42%. 

115

120

125

55

60

65
30

32

34

36

38

 
Fig. 4.  THD of the AC-line currents 

 
This result is compared to the classical 
equally-pulse-spaced (EPS) firing method [3], which 
always uses the symmetrical firing angles defined in eq. 
(19). Using EPS the THD is 31,64%. As this is only a 
small difference we look at the time-characteristics of the 

φ2 
φ1 

THD 
[%] 
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currents: Fig. 5 shows the time-characteristics of the 
direct current for the above mentioned minimization of 
the THD and for the EPS firing method. Therein the bold 
graph is for optimized firing angles (eq. (26)) and the thin 
one is for EPS (eq. (19)). One sees, besides a 
minimization of the THD, the optimized firing angles 
lead to a less ripple-afflicted direct current. The 
corresponding AC-line currents are shown in fig 6 and 
their space-phasor in fig. 7. 
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Fig. 5.  Time-characteristic of the direct current 
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Fig. 6.  Time-characteristics of the AC-line currents 

-2000 -1000 0 1000 2000
-1500

-1000

-500

0

500

1000

1500

2000

 
Fig. 7.  Space-phasor of the AC-line currents 

 
Fig. 6 and 7 lead to the same result: The optimized firing 
angles lead to a more balanced operation. This can also 
be seen in fig. 8, which shows the frequency spectrum of 

the current space-phasor. The non-characteristic 
harmonics (e.g. the –50Hz and the ±150Hz harmonics) 
are damped by use of the optimization, while the 
characteristic harmonics nearly stay the same. 
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Fig. 8.  Frequency spectrum of the current space-phasor 
 
8. Conclusion 
 
In this work, a method to calculate the operation of 
line-commutated current converters with unbalanced 
AC-line impedances is presented. A possible application 
is shown by means of an example, wherein a converters 
unbalanced operation is optimized. Though only small, 
improvements on a converter’s behaviour in 
unsymmetrical operation can be achieved. Depending on 
the actual problem major improvements can be achieved. 
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