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Abstract. This paper analyses the influence of wind power on 

the small signal stability of a power system. Factors like power 

dispatch, generator technology, wind farm location and wind 

power integration level are considered. The oscillatory modes 

that arise as a result of changes in system operating conditions 

are computed using modal analysis. Participation factors are 

also calculated to determine the relative contribution of each 

system state variables to a certain mode. Time domain 

simulations are carried out to validate the conclusion inferred 

from the modal analysis. 
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1. Introduction 

 

Grid integration of wind power today has achieved a 

considerable development. This fact is leading to a 

growing concern about its influence on the operation of a 

power system [1]. Much of these concerns are centred on 

the impact of wind power integration on the transient and 

voltage stability with less attention given to the small 

signal stability. 

 

Small signal stability is considered when there are small 

changes in operating parameters of a power system [2]. 

These changes can result in electromechanical oscillation 

but mostly decay with time and thus the system comes 

back to stable operating point. However, if the system is 

not adequately damped, the oscillation can lead to loss of 

synchronism. 

 

Small signal stability studies are based on linearised 

system around the operating point. The differential 

equations that describe the dynamic system are linearised 

and the system eigenvalues are computed from the 

characteristic equation. Majorly, there are two kinds of 

oscillation usually considered in small signal stability 

studies, the local area oscillations and the inter-area 

oscillations. Participation of each generator
’
s state 

variables to a particular mode of interest is computed 

from the participation matrix. The information obtained 

here is used to identify the critical generators that can 

cause instability and hence appropriate measures can be 

taken. 

 

The different methods that have been used in the 

literatures for analysing small signal stability of a large 

power system include prony analysis, Fourier-method 

[3], modal analysis method, time domain analysis and 

Probabilistic method [4, 5]. The issue of constant speed 

wind turbine generator on power system oscillation was 

studied in [3], impact of large scale wind power was 

analysed in [1] using three area network and modal 

analysis of doubly-fed induction generator was presented 

in [6] where the main focus is on the control mode. 

 

The  objective of this paper is to identify the influence of 

wind power on the power system small signal stability 

considering factors like direction of power flow in the 

tie-line, Transmission line length of the location of wind 

resources to the main grid, integration level and generator 

technology. 

 

The paper is organised as follows: section two presents 

the model of wind generators, the methodology of the 

study is described in section three, the test system and 

simulation results in different scenario are given in 

section four while the conclusion is presented in section 

five.  

 

2. Characteristic and Modelling of Wind        

    Generators 

 

The  per unit d-q stator, rotor voltage equation and the 

flux linkage equation of an induction machine in a 

synchronously rotating reference frame are given in 

equations(1)-(4) [7]. The generator convention is adopted 

i.e the stator and rotor currents are positive when flowing 

towards the network and both active and reactive power 

are also positive when flowing towards the grid. 
 

                      s

1
qs s qs ds qsV r i p

ω
= − − ψ − ψ                      (1)     

                      
s

1
ds s ds qs dsV r i p

ω
= − + ψ − ψ

                    
(2)                                   

                      s

1
qr r qr dr qrV r i s p

ω
= − − ψ − ψ

                    (3)              

                      s

1
dr r dr qr drV r i s p

ω
= − + ψ − ψ

                   (4) 
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The flux linkage equations are written as 

 

                      qs s qs m qrX i X iψ = +
                                 (5) 

                      ds s ds m drX i X iψ = +                                 (6) 

                      qr r qr m qsX i X iψ = +                                  (7) 

                      dr r dr m dsX i X iψ = +                                 (8) 

where, 

              s Ls mX X X= + and r Lr mX X X= +                             

      

The subscripts, s, and, r, denote the stator and the rotor 

quantities respectively, r, is the resistance, i, is the 

current, ψ is the flux linkage per second, X, is the 

reactance, S is the slip, ωs is the synchronous speed, p is 

the differential term (d(.)/dt). Xm, XLs and XLr are the 

magnetizing, stator leakage and rotor leakage reactances 

respectively. All the rotor quantities are referred to the 

stator. For squirrel cage induction generator qrV = drV =0, 

because the rotor is short-circuited. The electromagnetic 

torque developed by the generator is written as 

 

                      
( )

s

1
em m qs idr ds qrT X i i i i−ω

=
                                  

(9) 

 

The mechanical coupling between the generator and the 

turbine with one mass system assumed is given by.
 

                      
m em

d r
2H T T

dt

ω
= −

                               
(10) 

Where H  and mT are the per unit turbine inertia and 

mechanical torque respectively. 

 

A.   Wind Generators Model for Stability Studies 

 

For stability studies, voltage behind a transient 

impedance model is usually adopted with some 

simplification [8]. Machine stator transients is neglected 

i.e qsp 0ψ = ,  dsp 0ψ = .  In this way, the stator 

differential voltage equation in (1) and (2) is simplified 

into an arithmetic equation. This is referred to as third 

order reduced model in the literature. However, to obtain 

this model, equations (1)-(8) in section two are 

rearranged and the following new terms are defined. 

( )m

r

X

qs drX
e = ψ , ( )m

r

X

ds qrX
e = ψ ,

2
' m

s
r

X
X X

X
= − , r

o
s r

X
T

r
=

ω
 

The state space model obtained is given by 

                      x Ax Bu= +&
                                          

(11) 

where, 
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3. Methodology 

 

Modal analysis method is adopted in this paper because it 

proves to be superior compared to other methods, as it 

provides additional information to identify the critical 

generators that may be used to determine the location of 

eventually needed stabilizing devices in order to 

influence the system damping efficiently. The dynamic 

behaviour of a large complex non linear system such as a 

power system can be represented by (12) and (13). 

                      ( )x x, u, t= ƒ&                                         (12)            

                      ( )y g x, u, t=                                           (13) 

where 

                    

( )
( )

T

1, 2 n
T

1 2 n

x x x ,....., x

u u ,u ,...., u

=

=  

x is the state vector,  u is the input vector and y is the 

output vector. 

 

To study the small signal characteristic behaviour of a 

dynamic system, its singular point is important; 

conclusion about stability can be drawn from a linearised 

system. Therefore the non linear equation (12) and (13) 

are linearised using Taylor series. The linear result 

equation is written as (14)and (15) [9]. 

                      x A x B u∆ = ∆ + ∆&                                   (14) 

                      
y C x D u∆ = ∆ + ∆                                    (15) 

Taking the Laplace transformation will result in 

equations (16) and (17) 

                      

adj(sI A)
x(s) B u(s)

det(sI A)

−
∆ = ∆

−
&                    (16) 

                      

adj(sI A)
y(s) C B u(s) Du(s)

det(sI A)

−
∆ = ∆ +

−
   

(17) 

The poles of x(s)∆ and y(s)∆ are the roots of the 

characteristic equation (18) 

                      
det(sI A) 0− =                                       (18) 

Equation (18) can be re-written as (19) 

 

                      
det( I A) 0λ − =                                       (19) 
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The value of λ  that satisfies equation (19) are the 

eigenvalues of matrix A. It contains information about 

the response of the system to a small perturbation. The 

eigenvalue can be real and/or complex. The complex 

values appear in conjugate pairs if A is real (20). 

 

                      i i ijλ = σ ± ω
                                          

(20)  

 

Each eigenvalue represents a system mode and the 

relationship between this mode and the stability is given 

by Lyapunov
,
s first method [2] 

(i) Stable system, then iσ
<0 

(ii) Unstable system, then iσ
>0 

(iii) When iσ =0, then nothing can be said in general 

The frequency of oscillation in, Hz, and the damping 

ratio are given by (21) and (22). 

                      

i

2

ω
ƒ =

π
                                                 (21) 

                      

i

2 2
i i

−σ
ξ =

σ + ω
                                       (22) 

The participation factor of mode i, can be computed 

using (23) and (24) [8] 

 

                      

1i

2i
i

mi

p
p

p
....
p

 
 

=  
 
 

                                             (23) 

 

                      
ki ik

ki n

ki ik
k 1

p

=

Φ Ψ
=

Φ Ψ∑
                                (24) 

m is the number of state variables, kip is the participation 

factor of the 
thk state variable into mode i, kiΦ is the 

thi

element of the 
thk right eigen vector of A, ikΨ is the 

thm

element of the 
thi left-eigenvector of A. 

 

4. The System under Study and the Result of    

    the Modal Analysis 

 

The system under study consists of the popular two area 

network in reference [2]. The data used is the same with 

the one given in [2]. The system without wind power 

integration serves as the base case (BC). For the number 

of states to be limited in order to reduce the complexity 

of the problem and to improve usability of result, the 

synchronous generators are not equipped with exciters. 

This is considered appropriate according to reference [9] 

to gather a qualitative insight. It is however necessary to 

model  the exciters when considering a detailed 

quantitative modelling of real power system [9]. 

 

 
 

Figure 1: The system under study. 

 

In the system under study, 439.96MW of power is 

exported from area one to area two. The eigenvalues of 

the BC are computed, 24 eigenvalues were obtained with 

negative real part. According to Lyapunov, this system is 

small signal stable. Six of the eigenvalues are complex, 

denoting an oscillatory mode. Only the results of the 

oscillatory mode are given in table 1. 

  

Table 1: Electromechanical mode of the study system 

Mode jλ = σ ± ω  ƒ ,Hz ξ  

* -1.030 ± 9.002 1.433 0.114 

** -0.715 ± 8.065 1.284 0.088 

∆ -0.069 ± 3.427 0.545 0.020 

 

* Local mode in area one. 

** Local mode in area two. 

∆ Inter area mode between area one and area two. 

 

The modal bar diagram showing the speed participation 

of the generators of the inter-area mode which has the 

least damping ratio is presented in figure 2  

 

 
 

Figure 2:  Speed participation bar plot of the inter-area mode 

 

A small disturbance of 1ms fault duration was created at 

time, t=0, at the middle of line 7-8A, the speed deviation 

of the generators is presented in figure (3). The plot 

shows that the generators in area 1 oscillate against the 

generators in area 2 thereby confirming the result of the 

modal analysis. 
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Figure 3: Speed deviation of the 4 machines in the two area 

network during 1ms fault duration at line (7-8A) 

 

A.  Wind Farm Integration 

 

The wind farm (WF) is assumed to consist of 2MW, 

0.69kV generators modelled as an aggregate wind farm 

in line with [10] to the required MW of power. Aggregate 

model reduces simulation time required by detailed multi 

turbine system.  It is also assumed that the wind farms are 

located far from the grid where the wind resources are 

located as the case for most real wind farms; therefore the 

WF is connected to the system at B 6 through a 25km 

line and two transformers (0.69/20kV, 20/230kV). The 

WF consisting of squirrel cage induction generators 

(SCIG) is adequately compensated with shunt capacitor 

at 0.69kV and 20kV buses to ensure a satisfactory 

voltage level at all the buses. The wind farm made up of 

doubly-fed induction generators (DFIG) is connected to 

the grid through a three phase transformer and power is 

injected into the grid at unity power factor. This is 

achieved through the pulse-with modulation frequency 

converter between the rotor of the generator and the grid. 

The detailed model of the converter and its associated 

controllers can be found in [11]. 

 

The scenarios considered are discussed in the various 

subheadings 

 

1) Influence of Wind Power Penetration on the 

Oscillatory Modes of a Power System 

 

A wind farm made up of SCIG was connected to bus 6. 

The power from the wind farm was gradually increased 

by 100MW while reducing the power output of SG2 by 

the same amount so that the total power in area one 

remains the same. The results show that the damping of 

the low frequency inter-area mode decreases while the 

local modes are positively influenced. This is presented 

in figure 4. The technology of the generators making up 

the wind farm was changed to DFIG and the influence of 

wind power penetration was again studied. The result is 

presented in figure 5. 

 
Figure 4: Influence of wind power penetration using SCIG on 

the damping of electromechanical mode 

 

 
Figure 5: Influence of wind power penetration using DFIG on 

the damping of electromechanical mode 

 

From the result shown in figure 5, area one local mode is 

positively influenced by the wind farm. The inter-area 

mode is slightly positively influenced while the influence 

on area two local mode is not clear as it shows a constant 

damping ratio for all wind power integration. 

 

2) Influence of Tie-Line Power Flow on the Small 

Signal Stability of a Power System. 

 

The SG2 was now taken out completely and then 

substituted with the same amount of wind power so that 

about 50% of the power produced in area one is from the 

wind farm. The system became unstable when exporting 

power to area two. However, when the direction of power 

flow in the tie-line was changed (i.e interchanging the 

load) so that power is imported from area two, the 

unstable modes at the right were pushed to the left side of 

the complex plane thus making the system stable. This is 

depicted in figures 6 and 7 (only the critical modes are 

shown on the complex plane for clarity. 

 

Similar results were obtained when SG4 in area two was 

totally replaced by wind farm. The results also show a 

stable system for power import from area one to area two 

and unstable operation for power export from area 2 to 

area 1. 
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Figure 6: SG2 totally replaced by wind farm with power 

exported from area 1 to area 2 

 

 
 

Figure 7: SG2 totally replaced by wind farm with power 

imported from area 2 to area 1 

 

 3) Impact of Transmission Line Length on the Small 

Signal Stability of a Power System 

 

Most wind resources are found very far from the city 

where access to main grid is not available. The influence 

of the length of the transmission line to the main grid on 

the small signal stability is investigated. From the result 

in figure 8, it seems the length of the transmission line 

does not have influence on both the local and the inter-

area mode. 

 
 

Figure 8: Influence of transmission length on the damping ratio 

and the frequency of electromechanical mode 

 

4) Change in Wind Generator Location 

 

The IEEE 9 bus test system was used to study the 

influence of change in wind generator locations on the 

small signal stability of a power system. Synchronous 

generators at bus 2 and bus 3 were taken out in turn and 

substituted with the same amount of wind farm.  

 
 

Figure 9: IEEE 9 bus benchmark 

16 eigenvalues were computed first for SCIG technology. 

All the eigenvalues have negative real part for the three 

scenarios considered indicating that the system is small 

signal stable in all the cases. Electromechanical modes 

are picked out and presented in table 2 according to the 

rule relating to frequency of oscillation i.e  

0.2< ƒ <2.5Hz  [12]. 

 

Table 2: electromechanical eigenvalues, frequency and damping 

ratio of IEEE 9 bus using SCIG technology 

SCIG jλ = σ ± ω  ƒ ,Hz ξ  

3SG -0.785 ± 10.990 1.749 0.071 

WF at B2 -1.239 ± 15.073 2.399 0.062 

WF at B3 -0.867 ± 8.292 1.320 0.104 

 

From table 2 it can be inferred that wind farm (SCIG) can 

have both positive and negative influence on the damping 

of the oscillatory mode depending on the location. When 

WF is connected to bus 2, the damping ratio of the 

oscillatory mode decreases. The oscillatory modes are 

better damped when the wind farm is connected to bus 3, 

( ξ >10%). 

 

The wind farm technology was again changed to 

DFIG. The elecromechanical modes are presented in 

table 3. 

Table3: Electromechanical modes (DFIG) 

DFIG jλ = σ ± ω  ƒ ,Hz ξ  

3SG -0.785 ± 10.990 1.749 0.071 

WF at B2 -1.654 ± 17.578 2.398 0.094 

WF at B3 -1.002 ± 13.675 2.177 0.074 

 

The wind farm (DFIG) has a better damping in all the 

locations considered. The participation factors of the 

electromechanical modes are presented in table 4. 

 

Table 4: Participation factor 
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The modal phasor diagram for DFIG wind farm at bus 3 

is presented in figure 10 

 

 
Figure 10: Phasor modal plot of the electromechanical mode 

when wind farm is connected to bus 3 

 

From the participation factor computed, it can be seen 

that wind farm itself does not contribute to the 

electromechanical modes. 

  

5. Conclusion 

 

The influence of wind power on the small signal stability 

of a power system has been studied on four machine two 

area network and the IEEE 9 bus system as a benchmark. 

From the studies, wind power has positive influence on 

the damping of local area modes. DFIG has a better 

damping influence on the inter-area mode than the SCIG.  

The direction of wind power dispatch on the stressed tie-

line has influence on the small signal stability of a power 

system. In this study, the system is small signal unstable 

when about 50% of power produced in an area is 

exported over the weak tie-line. However, the system is 

stable for power import.  

 

The length of the transmission grid from the wind 

location to the main grid seems not to have an influence 

on both the damping and frequency of oscillation of both 

the local area and the inter-area modes. The location of 

wind farm made of SCIG technology can have both 

positive and negative influence on the damping of the 

oscillatory mode depending on where the wind farm is 

located. However, with doubly-fed induction generator 

technology, the wind farm is seen to have better damping 

in all the locations. 

 

In this paper, a qualitative study mainly is carried out on 

small test systems. Further investigation is necessary for 

large power systems. 
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