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Abstract. In this paper, self-tuning Kalman Filter (KF) is 

applied to a significant sample of full waveforms associated to 

the voltage dips monitored in the Italian distribution network by 

the QuEEN system, with the aim of events detection and 

waveforms segmentation. Segmentation is done in order to 

extract more features and information from the original voltage 

waveforms, to make easier voltage dips classification, based on 

the events source location (upstream/downstream from the point 

of measurement). The aforementioned classification is achieved 

by Machine Learning algorithms. The evaluation of the obtained 

results is based on the computation of a “confusion matrix”. 
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1. Introduction 

 
Nowadays, a significant amount of Power Quality (PQ) 

data is already available and, in the smart grid perspective, 

is probably going to grow due to the increased adoption of 

different type of monitoring devices [1]. In this context the 

investigation on methods and techniques for the automatic 

analysis of large amounts of data become an important 

issue for researchers and PQ engineers. In particular as far 

as voltage dips are concerned the aim of such methods 

should be that of discriminating the events due to faults 

from those with a different origin (induction motor starts, 

transformer energization etc.). Another issue of interest for 

PQ engineers, which concerns mainly  events 

responsibility, is that of classifying and characterizing 

voltage dips on the base of their source location 

(upstream/downstream from the point of measurement).  

 

In literature the last problem has been afforded by both 

advanced waveform analysis techniques [2, 3] and by an 

“experimental” method based on the comparison of the 

characteristics of events monitored at nearby primary 

substations [4].   

In the former works mentioned, the authors have utilized 

an algorithm to segment the waveform into steady state 

and transient segments based on  tensor theory [2] and on  

a “residual model” respectively [3]. The first method is 

not easily applicable to real monitoring system because 

of the cost of this solution which requires the monitoring 

of both voltage and current at each measurements point. 

The second method by now has been mainly applied to 

differentiate between events due to faults from those with 

a different origin. In any case, the proposed methods 

have been tested only on synthetic or semi-synthetic 

signals [5]. 

 

On the other hand the aforementioned “experimental” 

method [4], that has been applied by RSE since 2009 on 

the annual voltage dip statistic monitored by the QuEEN 

system (the Italian PQ system monitoring for survey 

purposes) [6], requires by now a wide monitoring system 

and time consuming procedure of data analysis (in fact 

some topological info from the TSO are needed to 

achieve a full automatic implementation). 

 

In this paper, we apply self-tuning Kalman filter and 

machine learning algorithms to detect the upstream or 

downstream origin of the voltage dips monitored on field 

by the QuEEN system in the Italian MV distribution 

network. In order to achieve the full voltage waveforms 

some improvements have been recently introduced in the 

QuEEN monitoring system regarding the event 

acquisition. 

 

The remainder of this paper is organized as follows: in 

section 2 a critical review of the segmentation methods 

proposed in literature, is presented by testing them on the 

available full voltage waveforms acquired on field. In 

section 3, the self-tuning Kalman filter and how the 

parameters are selected for its design are described, while 

the results of its application to a significant sample of 

voltage waveforms are shown in section 4. In the next 

section (section 5) the results obtained by the application 

of a machine learning algorithm to voltage dips 

upward/downward origin classification are presented. In 

the final section (section 5) some conclusions are drawn. 

 

https://doi.org/10.24084/repqj14.346 409 RE&PQJ, No.14, May 2016

mailto:riccardo.chiumeo@rse-web.


2. Critical review of segmentation methods 
 

The first step afforded by any advanced waveform analysis 

technique is the event waveform segmentation that means 

to take apart the waveform to steady-state segments and 

transition segments (Fig.1). The segmentation techniques 

adopted by some of the works, such as [5, 7, 8], have been 

analysed hereafter by their application to real waveforms. 

In fact, when these techniques (i.e. the “residual model by 

KF or by Butterworth filter”, the “harmonic components 

method”) are applied to voltage signals collected from PQ 

monitors located at the distribution networks, it is 

observed that each of them faces some obstacles in the 

segmentation procedure. 

 

 
Fig. 1.Voltage waveform segmentation. 

 

In the “residual model”, for instance, the differences 

between Kalman filter estimation and voltage dip 

waveform (the residual) is used to identify the transition 

segments and a technique is introduced to set a threshold 

that helps to approximate both the beginning and ending 

points of the transient segment. In [5], two hypotheses (H0 

and H1) have been considered for setting the residual 

threshold: 

 

                               

                    
 

                           

                    

 

To implement those hypothesis and set the proper 

threshold the probability density function of both transient 

and steady-state segments points are required. This implies 

the availability of a great amount of both types of 

segments. In practice, the lack of data often makes difficult 

the estimation of the probability density function for 

choosing proper threshold [9]. 

 

Another author adopts a threshold algorithm based on 

“cusum theory” [7]; this solution works well in those cases 

in which voltage dips have a rectangular shape. In other 

cases, as shown in Figure .2, the changes in voltage are 

small and the algorithm does not work very well (the red 

circle). 

 

 
Fig. 2. An example of applied “cusum theory” on QuEEN 

voltage signal. 

 

In other literature [8], an algorithm based on even 

harmonic components of the estimated voltage signal by 

KF is employed for the detection and segmentation of the 

voltage waveform. The voltage signal model adopted is 

shown in equation (1) and consists of the fundamental 

frequency component and a certain number of harmonics 

N: 

 

 ( )  ∑   ( )    (       ( ))
 
      (1) 

 

The result of the application of the KF algorithm is that 

the fundamental frequency component detects the voltage 

dips shape, while the second harmonic peaks identify the 

transient segment. 

Even if this algorithm is not accurate as much as the 

previous mentioned algorithm, it is more applicable on 

real cases (as shown in next §). 

 

In this study, an optimized kalman filter estimator is 

applied on significant amount of voltage dips waveforms 

obtained from QuEEN to extract more features for 

voltage dips classification purposes. 

 

 

3. Self-tuning Kalman Filter design 
 

In order to design the KF estimator with a more accurate 

output, four essential parameters must be set: initial state 

estimate  ( ), initial estimator error covariance   ( ), 

system model error covariance   and measurement error 

covariance   [8]. Table.1 reports the values chosen, in 

the study, for the parameters. 

 
Table I- KF Setting 

Model Order 

N 
20 

 ( ) 0 

 ( ) 

1 (e.g. the initial state vector at the beginning 

of the process is significantly different from 

observation.) 

  
     (e.g. the low value means low 

measurement error.) 

  Self-tuning updating 
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In accordance with some literature [8],   is supposed to be 

a diagonal matrix with the constant value (       ) on 

the diagonal. 

In this paper, on the contrary, in order to improve the fast 

adaptive capability of KF to the sudden changes of the 

input signal,   is supposed to be updated during the KF 

processing in the following way [10]: 

 

 ̂( )             (2) 

 ̂( )      ( ̂ ( )   ̂ ( ))   (3) 

 ̂( )   ( )  ( )   ( ) ( )   (4) 

 

where,       are the Kalman gain, the measurement data, 

and the matrix that connects the measurement with the 

state-vector, respectively. 

 

At the end of the process, the state-vector is estimated. The 

first four elements of the state-vector are employed to 

estimate the event (state 1 and 2) and to detect all the 

transients segments (state 3 and 4). 

 

A. Threshold Setting 

 

The detection of both the beginning and the ending points 

of a transient segment depend on the selected threshold. 

The threshold is computed from Mean control chart x-bar 

chart [11] as the following: 

 

            ̿     ̅   (5) 

 

where,  ̿ and   ̅ are the average of sample means and 

standard deviation of the distribution of sample means. 

The value of   plays a crucial role in detecting the 

beginning and ending point of the transient segment. Thus, 

the L is chosen so that the “false alarm” takes the small 

value. Hence, the equation (5) is applied from right side 

and left side of the estimated second harmonic of full 

voltage waveform. And the selected value   for right side 

threshold is bigger than the selected value of    for left 

side threshold. 

 

4. Results of Self-tuning KF application 
 

Fig. 3 shows how KF estimates the magnitude of a full 

waveform voltage in case of event occurring three line to 

line voltages. Whereas, the result of waveform 

segmentation by right and left threshold setting for an 

event occurring in one line to line voltages, is presented in 

Fig. 4. 

 

5. Machine learning algorithms for voltage  

dips classification  
 

Among machine learning supervised classification 

algorithm, Support Vector Machine (SVM) has been 

chosen to classify the recorded voltage dips with respect to 

their source location (upstream or downstream from the 

measurement point) as this technique can be applied 

efficiently also to binary not linear classification problems 

[12]. In fact voltage dips of origin in the HV and MV 

networks plotted in the “duration/residual voltage plane” 

seem not to be linearly separable. 

 
Fig. 3. Estimated magnitude by KF for three line to line 

voltage event. 

 
Fig. 4. Detection of transition segments for one line to line 

event by the second harmonic and set right and left 

threshold. 

 

However, SVM succeeds in separating the data in two 

classes with as big a margin as possible. 

By considering at first only two features, voltage dip 

duration and depth, we get a model that does not fit the 

“training set” (data used to train the algorithm) very well, 

probably due to lack of features. 

 

A. More features are needed 

 

For this reason the aforementioned waveform analysis 

method (§3) has been applied to the set of waveforms at 

disposal to extract other features. These features include: 

 

(i) the number of line to line voltages involved 

in the event (“phase feature”); 

(ii) two-dimensional geometric shape of voltage 

dips as shaped by the transient and steady-

state segments identified by KF (“shape 

feature”). For instance, Fig. 5 shows a 

typical rectangular “three voltages” event 

characterized by two transient segments with 

one steady-state segment; whereas, Fig. 6 

shows a triangular “one voltage” event 

characterized by two transient segments and 

the lack of any “steady-state segment”. 
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Analysis has been done on 410 full voltage waveforms 

acquired from the Italian MV distribution network by the 

QuEEN system. Table II reports the obtained statistical 

results. 

 

 
Fig. 5. A rectangular and “three voltages” event KF estimation. 

 

 
Fig. 6. A triangular and “one voltage” event KF estimation. 

 

Table II- The statistical result. 

Total Number of 

Full Waveforms 

Total Success 

Cases 

Total Failure 

Cases 

410 346 84% 64 16% 

 

Success cases are those which self-tuning KF has 

estimated the event voltage and extracted the phase and 

shape features correctly; while failure cases  associated 

with those which have been estimated correctly even if 

their features have not been extracted  properly. 

 

B. The Support Vector Machine algorithm 

 

At the end of these analysis a matrix      is obtained, 

where   is the number of the success cases (346) and   is 

the number of features (4: Duration, Residual Voltage, 

Number of line to line voltages involved, and Shape). 

 

Support Vector Machine as a supervised machine learning 

classification technique is employed to classify voltage 

dips with respect to their source location.  

For this purpose, the matrix      is divided into two sub-

matrixes: a)    percent of the      has been taken as a 

training set matrix (242 out of 346); b)    percent of the 

     as a test set matrix (104 out of 346) [13]. The events 

in the two sub-matrixes are chosen randomly, by a suitable 

Matlab algorithm, to better verify the SVM algorithm 

performance.  

The training set matrix is used to train the model and then 

the model performance is evaluated with the test set 

matrix. 

 

Basically, SVM maps the training set into kernel space 

by a kernel function (Gaussian Radial Basis Function 

Kernel ‘rbf’) and then, it applies another function in order 

to find the separating hyperplane so that minimises the 

margin between the two classes [14]. In this work, 

Sequential Minimal Optimization (SMO) has been 

utilized. 

 

6. Evaluating the Performance of the Model 
 

Confusion matrix gives possibility to evaluate and 

validate the model. Confusion matrix is a matrix    , 

where   is the number of classes (here, upstream, 

downstream from measurement point -    ).  

 

The Confusion matrix has been applied to both the 

“training set” and “test set” matrix. Accuracy says, the 

total number of the test set cases which have been 

correctly identified by the model, is 83% and 91% 

respectively. It worth noting that, the higher accuracy for 

the “training-set” does not guarantee the high 

performance of the model. 

 

Table III represents the confusion matrix which has been 

calculated on the 104 data set. True positive rate 

(sensitivity) and true negative rate (specificity) indicate 

the rate of positive cases (HV origin) and negative cases 

(MV origin) which are classified correctly. They are 87% 

and 94%; respectively. 

 

Table III. Confusion Matrix calculated on the 104 data set. 
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7. Conclusion 
 

In this paper, self-tuning KF is used and applied to a 

significant sample of voltage dips full waveforms acquired 

in the Italian distribution network, in order, at first, to 

detect voltage dips and then estimate their voltage 

magnitude. Additional features are then identified such as: 

“phase feature” and “shape features” by segmentation and 

the estimated voltage magnitude. These features, together 

with the event duration and event residual, are utilized to 

classify voltage dips on the base of their source location 

(HV and MV).  

The aforementioned classification is done by a Support 

Vector Machine algorithm: the performance of the 

algorithm has been evaluated by confusion matrix applied 

to both a “training set” and “test set” event matrix, 

obtaining an accuracy of 83% and 91% respectively.  

 

The analysed events refer to 410 full real voltage 

waveforms acquired from the Italian MV distribution 

network by the QuEEN system. 
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