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Abstract— In this paper, an Economic Model Predictive
Control (EMPC) approach has been presented to manage a
Community-based microgrid (C-µGCC) at the pricing level.
The main task is at satisfying the demand at prosumer sides
and, at the same time, optimizing various µ-Grid contrasting
objectives. Emphasis has been given to the operational con-
straints related to the components lifetime, whose satisfaction
would be beneficial for the grid in that the maintenance and
replacement costs would be reduced. A simulative analysis has
been carried out on the basis of available measured data related
to a location in Dublin, Ireland. Results show the effectiveness
of implementing the EMPC approach to optimally manage the
system.
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I. INTRODUCTION

Modern power grids, combining the presence of dis-
tributed energy resources (DG) with advanced power elec-
tronic and ICT systems, introduce several new concepts and
architectures as Microgrid (µGrid). Microgrids usually repre-
sent a single organized power subsystem having a number of
distributed generation (DG) sources, both renewable and/or
conventional, energy storage system (ESS), and a cluster of
loads [1]. These systems have been identified as an easy way
to integrate micro-generators into the Low-Voltage (LV) grids
[2].

Several countries (e.g. Ireland) have some policies for
micro generation (µGen) but µGrid policies are still missing.
In this context, a modified form of Grid, referred to as
Community-Based Microgrid (C-µGrid), has been proposed
in [3], [4]. C-µGrid is a system where people in a community
having their own µGen (existing or newly purchased) sys-
tems decide to cluster and form a µGrid system. This paper
deals with this new concept of grids and wants to address
the scenario depicted in Figure 1. There, a grid connected C-
µGrid system with storage capabilities has been developed
from a cluster of µGen systems. Each of the community
users is provided with his/her own micro-wind turbines (as
µGen) and, instead of having separate multiple converters,
they are all connected through a central converter.

All µGens are connected in parallel to a common DC
bus and have their own charge controller (CC). A common

Fig. 1. Grid-connected C-µGrid system with storage

storage is integrated to the dc bus. All converters have the
same dc output voltage. The dc bus is connected to a central
inverter that is managed by a Community Microgrid Central
Controller (C-µGCC), behaving according to its own control
strategy/algorithm, that is in charge of regulating the level
of energy to be stored and the amount of energy to be
imported from/exported to the main grid in order to satisfy
the demands while minimizing the cost of energy (COE) of
the system.

In this context, the control strategy adopted by the C-
µGCC is crucial to facilitate the power flow among the
generators, the storage unit and the loads. In this respect, the
paper proposes a control algorithm for C-µGCC to manage
the power shared among the prosumers on the basis of
the energy demanded at the consumer sides, the energy
produced by the µGens and the buying/selling tariff related
to the energy exchange with the external main grid. The
proposed strategy is based on the emerging Economic Model
Predictive Control (Economic MPC) approach.

Economic MPC is a receding horizon control strategy that
differs from standard MPC in that its action is computed on-
line by minimizing an objective function that is related to
some economical aspects of the system management rather
than control objectives, such as stability or tracking perfor-
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mance. Potential of Economic MPC for power management
has been investigated in [5], where such a method was used
to operate a portfolio of power generators and consumers so
that the cost of producing the required power is minimized.
Following the same lines, the above problem has been inves-
tigated in the presence of massive energy storage facilities in
[6] while a more efficient formulation of Economic MPC has
been presented in [7] for the minimization of the production
costs. Other works focusing on MPC control of energy
systems can be found e.g. in [8], [9], [10], [11], [12], [13],
[14], [15].

Notice that none of mentioned works consider in an
explicit way any constraint related to components lifetime.
However, a proper management of the components of the
system aimed at alleviating their degradation should lead
to benefits in terms of reduction of both maintenance and
replacement costs.

Moving from this considerations, in this work, an Eco-
nomic MPC framework is developed for the optimal real-
time power dispatch in a C-µGrid while minimizing the oper-
ational costs of the energy system. Differently from existing
works on the topic, the proposed strategy comes equipped
with the capability of taking into account in an explicit way
the lifetime of the battery during the computation of the
control commands. In the paper, such a feature is addressed
in two different ways by acting, in a first formulation, on
the cost index of the optimization problem, whereas, in an
alternative scheme, by adding an explicit constraint on the
desired lifetime in the optimization problem by exploiting
the notion of battery throughput [16].

The simulation results show the effectiveness of the solu-
tions, in terms of COE and components lifetime, in properly
distributing the power amongst the prosumers, storage and
the grid. Dublin, Ireland, has been chosen as the geographical
location for this study.

This paper is organized as follows. In Section II the
model of the plant is described and the problem to be
solved formulated. The Economic MPC control problem is
formulated in Section III. In Section IV, simulations are used
to show the effectiveness of the proposed approach.

NOTATIONS

Let I≥0 denote the set of nonnegative integers, Ip:q, p < q

the integer sequence {p, p+1, p+ 2, ..., q} and R the set of
real numbers.

II. C-µGRID OPERATIONAL CONTROL STATEMENT

A. Control-oriented Modelling

For our purposes, the C-µGrid system under investigation
can be described by the model depicted in Figure 2, where
the µGrid is represented by the interconnection of four main
components which include: a local consumer, a renewable
generator (wind turbine), a storage facility (battery) and an
external grid (main grid). In the figure, the signals dl(t)
(kilowatthaour) and ds(t), t ∈ I≥0 collect all the demand
required by consumers and the entire energy produced by
the wind sources respectively. Moreover, ub(t) denotes the
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Fig. 2. C-µGrid control oriented scheme

energy transmitted/received to/from the battery storing a
certain amount of energy x(t), while ug(t) represents either
the energy bought from the main grid (ug(t) > 0) or the
energy sold to the main grid (ug(t) < 0) within the following
fixed bounds

−ug ≤ ug(t) ≤ ug (1)

The cost of purchasing power from the grid varies according
to the time-varying buying tariff α(t) > 0 (euros per
kilowatthour) while the selling income is regulated by a
different time-varying tariff β(t) > 0. In this work, we
assume that α(t) ≥ β(t), ∀t ∈ I≥0.

The interactions among the independent components of the
C-µGrid is allowed by the bus that enable power exchange
from the wind turbines and main grid to battery and loads
according to the following algebraic equation

dl(t) = −ub(t) + ug(t) + ds(t) (2)

where only the quantities ub(t) and ug(t) are assumed to be
directly controllable by the supervisor while ds(t) and dl(t)
are stochastic power flows driven by wind turbine sources
and the consumer load demands respectively.

The battery is modeled as a device capable of storing a
certain amount of dc electricity. Limits are specified on how
quickly it can be charged or discharged, how deeply it can be
discharged without causing damage and how much energy
can cycle through it before it needs replacement. Moreover, it
is assumed that the properties of the battery remain constant
throughout its lifetime and are not affected by external factors
such as temperature.

In the proposed C-µGrid setting, for describing the battery
operation (the charge and discharge modes), we use a quasi-
kinetic battery model [17], which models the battery as a tank
storing a certain amount of energy x(t) at time step t that
evolves according to the following discrete-time difference
equation

x(t+ 1) = τx(t) + ub(t) (3)

with τ ≤ 1 denoting the hourly self-discharge decay [18].
Obviously, the quantity of storable energy is constrained as
the capacity of the battery is limited, i.e.

x(t) ≤ x (4)
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Furthermore, a further constraint about the minimum level
of stored energy should be taken into account

x(t) ≥ x (5)
Moreover, according to the kinetic battery model, only a
certain amount of stored energy is immediately available for
charging or discharging, but the rest is chemically bound.
For this reason the following inequalities are considered

ub ≤ ub(t) ≤ ub (6)
in order to limit the amount of transferable energy from/to the
battery to/from the other µ grid components. Finally, in order
to include in an explicit way the lifetime of the battery in
our supervision scheme, we have equipped the above battery
model with the further difference equation

q(t+ 1) = q(t)− |ub(t)| (7)
where q(t) is the remaining lifetime throughput of the battery
at time t, that is the amount of energy that can cycle through
the battery before failure, in practice, when q(t) ≈ 0, the
battery should be replaced.

B. System Operational Goals

Different criteria may be taken into account when manag-
ing a C-µGrid. In this paper and according to a given context,
the operational goals in the management of the C-C-µGrid
are of three kinds: economic, safety and durability and are
respectively stated as follows:

1) To provide a reliable electricity supply minimizing the
electricity purchase from the external grid;

2) To guarantee the availability of enough energy in
the battery to satisfy the consumer stochastic demand
under the stochastic power flow provided by the wind
turbines.

3) To plan an optimized battery schedule that guarantees
a long lifetime.

The economic goal could be achieved by minimizing
α(t)ug(t) when buying while maximizing −β(t)ug(t) when
selling. As a consequence, a supervisor for the grid should
indeed decide also if ug(t) should be positive or negative.
All these requirements could lead to an optimization problem
formulation involving both boolean and real variables. In
order to avoid a mixed-integer program, we encode the
above criteria into a standard optimization problem first by
recasting ug(t) as

ug(t) = u+
g (t)− u−

g (t) (8)
where

0 ≤ u+
g (t) ≤ ug

0 ≤ u−
g (t) ≤ ug

(9)

in this way we are splitting the energy exchanged with the
grid ug(t) into two virtual flows: the sold energy u−

g (t) and
the bought energy u+

g (t). Secondly, the above formulation
allows us to adopt the following performance indicator

JE(t) , α(t)u+
g (t)− β(t)u−

g (t) (10a)

The safety goal could be enforced by the safety constraint
(5), which can be conveniently reformulate as a soft con-
straint in the following way:

x(t) ≥ x(t)− ξ(t) ≥ 0 ∀t, (11)
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Fig. 3. C-µGCC scheme

where x ∈ R is a safety threshold of energy, estimated
empirically, above which is desired to keep the level of
energy to cope with the risk involved in the certainty-
equivalence principle due to demand uncertainty and in order
to avoid a deep discharge of the battery. As a result, the new
performance index

JS(t) , ξ2(t) (12)

is stated.
Finally, the third goal (durability) can be achieved by

considering the following performance index

JD(t) , u2
b(t) (13)

which aims at reducing the charge/discharge operations. In
the next section an alternative solution involving equation (7)
is presented in order to deal with this third goal.

III. ECONOMIC MPC FOR C-µGRID OPERATIONAL GOAL

The main goal of the operational control of microgrid at
pricing level is to satisfy the demands at consumer sides,
and optimizing, at the same time, the management policies
expressed as a multi-objective optimal control problem.
Hence, MPC results a suitable technique to control a C-µGrid
because its capability to deal efficiently with multi-variable
dynamic constrained systems and predict the proper actions
to achieve the optimal performance according to a user-
defined cost function. Moreover, the MPC design follows a
systematic procedure [19], which generates the control input
signals to the plant by combining a prediction model and a
receding-horizon control (RHC) strategy.

In this work we introduce two Economic MPC strategies
that deal with the economic and safety goals in the same way
but adopt different criteria to cope with the durability goal.
Both strategies are based on the control scheme depicted in
Figure 3 where the C−µGCC to be designed makes use of
the current state of the battery and wind generation and load
demand forecasts. In this paper, however, it is assumed that
the supervisor has perfect knowledge of the future evolution
of the mentioned quantities.

The first EMPC algorithm we are going to introduce is
referred to as MPC1. Consider the system (3) at a measured
condition. Given a prediction horizon Hp = 48, and the
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control objectives (see (10) and (12)) aggregated in a per-
formance index J : RHp×(Hp−1) → R, the MPC1 problem
for the microgrid consists in solving a finite horizon optimal
control problem given by

J∗
1 , min

u
+
g ,u

−

g ,ub,ξ

t+Hp−1
∑

k=t

[γEJE(k|t) + γSJS(k|t) + γDJD(k|t)],

(14a)

subject to:

x(k + 1|t) = τx(k|t) + ub(k|t), ∀k ∈ It:t+Hp
(14b)

dl(k|t) = −ub(k|t) + ug(k|t) + ds(k|t) (14c)

x(k + 1|t) ≤ x, ∀k ∈ It:t+Hp
(14d)

− ub ≤ ub(k|t) ≤ ub, ∀k ∈ It:t+Hp−1 (14e)

0 ≤ u+
g (k|t) ≤ ug, ∀k ∈ It:t+Hp−1 (14f)

0 ≤ u−
g (k|t) ≤ ug, ∀k ∈ It:t+Hp−1 (14g)

x(k + 1|t) ≥ x− ξ(k + 1|t) ≥ 0, ∀k ∈ It:t+Hp
(14h)

(x(t|t), dl(t|t), ds(t|t)) = (x(t), dl(t), ds(t)) (14i)

Then, according to the RHC strategy, one applies only
the first samples u+

g (t|t), u−
g (t|t), ub(t|t) of the optimal

sequences

u−→
+
g (x(t)) ,

[

u+
g (t|t), . . . , u

+
g (t+Hp − 1|t)

]

u−→
−
g (x(t)) ,

[

u−
g (t|t), . . . , u

−
g (t+Hp − 1|t)

]

u
−→b(x(t)) , [ub(t|t), . . . , ub(t+Hp − 1|t)]

respectively. At the next time instant, the prediction horizon
is shifted one time instant ahead and the optimization is
restarted with new feedback measurements and updated pre-
dictions to compensate unmeasured disturbances and model
inaccuracies. This scheme is repeated at each future time
instant. ♦

Please notice that in the above optimization problem the
durability goal is enforced by including in the optimization
cost the term JD introduced in the previous section. On the
contrary, such a goal can be dealt with by including explicit
constraints involving the battery lifetime as in the following
second MPC formulation denoted as MPC2

J∗
2 , min

u
+
g ,u

−

g ,ub,ξ

t+Hp−1
∑

k=t

[γEJE(k|t) + γSJS(k|t)] , (15a)

subject to:

(14b)− (14i)

q(k + 1|t) = q(k|t)− |ub(k|t)|, ∀k ∈ It:t+Hp−1

(15b)

D(t)

2

t+Hp−1
∑

k=t

(|ub(k|t)|) ≤ q(t). (15c)

where the quantity D(t) is the desired remaining amount of
days at time t before battery needs replacement. Roughly
speaking, the above solution is computed in such a way that
if the same quantity of energy

∑t+Hp−1
k=t (|ub(k|t)|) were

transferred to/from the battery from time t onward, then the

battery would have a lifetime at least equal to D(t). Even
in this case the RHC approach applies and, furthermore, the
quantity D(t) should be decreased by 1 at each time t instant,
i.e. D(t+ 1) = D(t)− 1.

Remark 1: Despite the intuitive formulation of the RHC
strategy, the on-line tuning of an MPC controller is not trivial
or systematic. The MPC tuning parameters for the given
cost function usually are the prediction horizon Hp and the
weighting terms γE , γS , γD.

Remark 2: It is worth commenting that in problem (17)
ub(k|t) → 0 when D(t) → ∞, that is if the desired
remaining amount of days before replacement for the battery
is too high, its activity results very limited or even inexistent.

IV. APPLICATION TO AN IRISH COMMUNITY C-µGRID

A. Case Study Description

In this section the system depicted in Figure 1 is set in
the Irish context. In this respect, specific Grid electricity
bill for day time and night time (see Table 1) are taken
from the local authority of electricity, ESB1. Details about
system parameters and economical information can be found
in Table 1. Here it is worth commenting that the decay τ is
tuned such that the battery loses the 20% of the stored energy
after one month.

TABLE I

SYSTEM PARAMETERS AND COSTS

HOUSES

NUMBER 10
AVERAGE DAILY SINGLE LOAD DEMAND 14 kWh/day,

TURBINES

MAXIMUM ACHIEVABLE POWER 6kW
COST PER UNIT 18 ke

BATTERY

CAPACITY x 144 kWh
DECAY FACTOR τ 0.9997
INITIAL LIFETIME THROUGHPUT Q(0) 2.5×105 kWh
MINIMUM STORABLE ENERGY x 0.3x
MAXIMUM CHARGE RATE ub 5 kWh
MINIMUM CHARGE RATE ub 5 kWh
REPLACEMENT COST 18ke

CONVERTER

NUMBER 1
INITIAL COST 13430 e
REPLACEMENT COST 7597 e

OTHER PARAMETERS

DAILY BUYING TARIFF α(t) 0.233 e/kWh
NIGHTLY BUYING TARIFF α(t) 0.153 e/kWh
DAILY SELLING TARIFF β(t) 0.103 e/kWh
NIGHTLY SELLING TARIFF β(t) 0.103 e/kWh
MAXIMUM PURCHASABLE ENERGY ug 10 kWh
MAXIMUM SALABLE ENERGY ug 40 kWh
GRID

DAILY BUYING TARIFF α(t) 0.233 e/kWh
NIGHTLY BUYING TARIFF α(t) 0.153 e/kWh
DAILY SELLING TARIFF β(t) 0.103 e/kWh
NIGHTLY SELLING TARIFF β(t) 0.103 e/kWh
MAXIMUM PURCHASABLE ENERGY ug 10 kWh
MAXIMUM SALABLE ENERGY ug 40 kWh

OTHER PARAMETERS

MAINTENANCE COST 160 e

1Electric Ireland, ESB; https://www.electricireland.ie/ei/home/index.jsp
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B. Closed loop setup

All results have been obtained by considering an one year
real-demand data (sampled at 1 hour interval), and Hp =
48. For all MPC strategies, the control objectives in (14a)
have been prioritized with γE = 1, γS = 0.001 and γD =
0.0001, which resulted suitable after a trial-and-error tuning
strategy. The network has been simulated by using the same
model used to design the MPC controller but fed with real
energy demands. Wind speed data has been collected from
MET Éireann2 and load demand for general household in
Dublin have been collected from the respective authorities3.
All simulations have been undertaken by using the Yalmip
interpreter [20] and the CPLEX solver, all running under
MATLAB c© 8.2 environment, running on an Intel c© Core
i5-3330 machine with 3.3 GHz and 8 GB RAM.

C. Results, Comparisons and Discussion

Simulations have been carried out where an increasing
number of turbines has been considered in order to test the
robustness of the following algorithm:

2Monthly wind speed data, Met Éireann; 2012
3Standard load profiles, 2011, Retail Market Design Service; 2009
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to the price of demanded kilowatthour for the consumers.

• MPC1: solving problem (16)
• MPC2-10y: solving problem (17) with desired lifetime

for the battery equal to 10 years (D(0) = 10× 365)
• MPC2-20y: solving problem (17) with desired lifetime

for the battery equal to 20 years (D(0) = 20× 365)

In Figure 4 the time before battery replacement (i.e the time
before q(t) ≈ 0) is depicted. Interesting enough, only the
MPC2-20y strategy is able to guarantee a 20 years lifetime
for the battery, thus avoiding its replacement while keeping
similar performance with respect to its competitors. Such an
aspect has a positive impact on the overall operational costs
of the C-µGrid over an horizon of 20 years (see Figures 4-7).
In this respect all calculations are based on a loan having a
4.75% rate An annual inflation rate of 1.79% is also taken
into account, which was the average annual inflation rate for
Ireland between January 2003 and December 20134.

Figure 5 analyzes the economic impact of the C-µGrid
from the External Grid point of view by showing the Cost
of Energy (COE) that indicates how much is the energy
produced by the C-µGrid (sold energy plus served energy to
the load):in this case the C-µGrid can be seen as a generator.

In order to analyze the economic impact with respect
to C-µGrid point of view we have shown the total costs
arising from C-µGrid management, including the incomes
derived from the energy export as a negative cost, in Figure
6. Incomes are computed as

365×24
∑

t=0

{

−α(t)ug(t), ug(t) ≥ 0
−β(t)ug(t), ug(t) < 0

(16)

Such costs have been used to compute the cost of demanded
load energy in the C-µGrid (µCOE), which represents the
price of a kilowatthour for the consumers in the C-µGrid. It
is evident, from the above described Figures that the C-µGrid
presents better economic performance with the maximum
number of turbines. Moreover, it is worth pointing out that
in the case of MPC2-20y both the COE and the µCOE
are reduced by 25% with respect to other presented MPC
based approaches. Hence, the proposed strategy that takes
into account in an explicit way the battery degradation has
not a marginal impact on the economic aspects.

For the sake of completeness we included in Figures
8-9 the time-domain plots pertaining to the first week of

4http://www.inflation.eu/inflation-rates/ireland/historic-inflation/cpi-
inflation-ireland-2014.aspx
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the simulation horizon. There, the Economic MPC based
strategies have been compared in the case of 7 turbines only
being operating. It is evident that in Figure 9 both MPC1

and MPC2-10y make a deeper usage of the battery.

V. CONCLUSIONS

C-µGrid can become a transitional solution in countries
where policies for µGens are present while those for µGrid
don’t yet exist. An Economic MPC (EMPC) approach has
been applied here to design the central controller of a C-
µGrid system and shown that has the capability to deal effi-
ciently with multi-variable dynamic constrained systems and
predict properly its actions in order to achieve the optimal
performance according to user defined cost functions.

A simulative analysis undertaken in a location in Ireland
has shown that the control actions provided by the MPC
approach were able to feasibly operate the C-µGrid also
for a lower number of wind turbines (three in the examples
considered). The Economic MPC approach was shown to
be able to guarantee a 20 years lifetime for the battery
avoiding its replacement while satisfying the other required
prescriptions. In particular, it has been shown that the control
strategy may have a strong impact on the overall cost of
the system, having the MPC approach reduced the COE
remarkably. Finally, because all simulations have been per-
formed on hourly basis, the results also show that the MPC
approach satisfies the hourly demand. Thus, the approach has
the potential to become of industrial interest.

REFERENCES

[1] R. H. Lasseter and P. Paigi, “Microgrid: a conceptual solution,” in
Power Electronics Specialists Conference, 2004. PESC 04. 2004 IEEE

35th Annual, vol. 6. IEEE, 2004, pp. 4285–4290.
[2] D. Pudjianto, G. Strbac, F. van Oberbeeke, A. Androutsos, Z. Larrabe,

and J. T. Saraiva, “Investigation of regulatory, commercial, economic
and environmental issues in microgrids,” in 2005 International Con-
ference on Future Power Systems. IEEE, 2005, pp. 6–9.

[3] L. Mariam, M. Basu, and M. F. Conlon, “Community microgrid based
on micro-wind generation system,” in Power Engineering Conference

(UPEC), 2013 48th International Universities’. IEEE, 2013, pp. 1–6.
[4] L. Mariam, M. Basu, and M. F. Conlon, “Sustainability of grid-

connected community microgrid based on micro-wind generation
system with storage,” in 2014 IEEE 23rd International Symposium
on Industrial Electronics (ISIE). IEEE, 2014, pp. 2395–2400.

[5] T. G. Hovgaard, K. Edlund, and J. Bagterp Jorgensen, “The potential of
economic mpc for power management,” in 2010 49th IEEE Conference

on Decision and Control (CDC). IEEE, 2010, pp. 7533–7538.
[6] O. Adeodu and D. J. Chmielewski, “Control of electric power trans-

mission networks with massive energy storage using economic mpc,”
in American Control Conference (ACC), 2013. IEEE, 2013, pp. 5839–
5844.

[7] L. Standardi, N. K. Poulsen, J. B. Jorgensen, and L. E. Sokoler, “Com-
putational efficiency of economic mpc for power systems operation,”
in Innovative Smart Grid Technologies Europe (ISGT EUROPE), 2013
4th IEEE/PES. IEEE, 2013, pp. 1–5.

[8] W. Qi, J. Liu, X. Chen, and P. D. Christofides, “Supervisory predictive
control of standalone wind/solar energy generation systems,” Control

Systems Technology, IEEE Transactions on, vol. 19, no. 1, pp. 199–
207, 2011.

[9] A. Parisio and L. Glielmo, “Energy efficient microgrid management
using model predictive control,” in 2011 50th IEEE Conference on
Decision and Control and European Control Conference (CDC-ECC).
IEEE, 2011, pp. 5449–5454.

[10] X. Wang, A. Palazoglu, and N. H. El-Farra, “Operation of residential
hybrid renewable energy systems: Integrating forecasting, optimization
and demand response,” in American Control Conference (ACC), 2014.
IEEE, 2014, pp. 5043–5048.

[11] L. Xie and M. D. Ilic, “Model predictive economic/environmental
dispatch of power systems with intermittent resources,” in Power &

Energy Society General Meeting, 2009. PES’09. IEEE. IEEE, 2009,
pp. 1–6.

[12] E. Biyik and R. Chandra, “Optimal control of microgrids-algorithms
and field implementation,” in American Control Conference (ACC),

2014. IEEE, 2014, pp. 5003–5009.
[13] I. Prodan and E. Zio, “A model predictive control framework for

reliable microgrid energy management,” International Journal of Elec-
trical Power & Energy Systems, vol. 61, pp. 399–409, 2014.

[14] A. Hooshmand, B. Asghari, and R. Sharma, “Efficiency-driven control
of dispatchable sources and storage units in hybrid energy systems,” in
American Control Conference (ACC), 2014. IEEE, 2014, pp. 1686–
1691.

[15] R. Palma-Behnke, C. Benavides, F. Lanas, B. Severino, L. Reyes,
J. Llanos, and D. Sáez, “A microgrid energy management system based
on the rolling horizon strategy.” IEEE Transactions on Smart Grid,
vol. 4, no. 2, pp. 996–1006, 2013.

[16] A. Andersson, “Battery lifetime modelling,” Riso National Laboratory,
vol. 3, p. 4, 2006.

[17] J. F. Manwell and J. G. McGowan, “Lead acid battery storage model
for hybrid energy systems,” Solar Energy, vol. 50, no. 5, pp. 399–405,
1993.

[18] A. McEvoy, T. Markvart, L. Castañer, T. Markvart, and L. Castaner,
Practical handbook of photovoltaics: fundamentals and applications.
Elsevier, 2003.

[19] J. Maciejowski, Predictive control with constraints. Essex, England:
Prentice Hall, 2002.

[20] J. Löfberg, “Yalmip : A toolbox for modeling and optimization
in MATLAB,” in Proceedings of the CACSD Conference, Taipei,
Taiwan, 2004. [Online]. Available: http://users.isy.liu.se/johanl/yalmip

https://doi.org/10.24084/repqj14.257 177 RE&PQJ, No.14, May 2016




