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Abstract. This study demonstrates the importance of 

managing the risk of performance ratio guarantees, which 

typically are applicable to most commercial PV projects. A 

qualitative assessment of the performance metrics has shown 

multiple performance parameters, which could influence the 

Performance Ratio. Alternative performance metrics, including 

the Temperature Corrected Performance Ratio and the Weather 

Corrected Performance Ratio were evaluated by means of a 

quantitative analysis. The Temperature– and Weather Corrected 

Performance Ratios have both demonstrated the capability of 

reducing the inter-annual and seasonal variance experienced with 

the conventional Performance Ratio. The respective performance 

metrics were further calculated from multiple years of 

meteorological data in order to construct a statistical distribution 

for each performance metric. The resulting probability 

distribution function was then used to determine the probable risk 

percentiles for each of the respective performance metrics and 

compared with the separately calculated performance metrics 

referring to a long-term mean data set. It was demonstrated that 

the long-term mean derived performance parameters did present 

a risk for overstating the facilities’ performance. The risk was 

mitigated by referring to the multi-year’s P90 percentile instead. 

 

Key words 
 

PR Probability, Performance Ratio, Temperature 

Corrected Performance Ratio, Weather Corrected 

Performance Ratio. 

 

1. Introduction 
 

Performance Ratio (PR) guarantees are typical in 

Engineering Procurement and Construction (EPC) 

agreements for commercial photovoltaic (PV) power 

generation facilities. This ensures that the EPC contractor 

can be held liable for the facility’s performance as 

originally proposed during the bidding stage. It 

theoretically provides comprehensive protection in solar 

PV projects against a wide range of risks [1]. It ensures 

that the EPC contractor has completed the project to 

specification prior to its acceptance by the owner [2, p. 3]. 

 

The contractor’s liability for Performance Liquidated 

Damages (PLDs) could typically be set at 20% of the 

overall EPC price, but failure to remedy the 

underperformance, could result in breach of the contract, 

which carries the maximum liability of contract 

termination, plus reinstatement [3, p. 13]. 

 

The Performance Ratio guarantees required from EPC’s 

very seldom define the measuring season of the PR 

compared to the guaranteed annualized PR [3, p. 49]. 

Research has shown that the weather effect on the PR can 

result in a seasonal variance of up to 10% [4, p. 1]. The 

stakeholders require a level of confidence for the 

expected facility output, based on quality and uncertainty 

of the inputs used for the yield calculation model. 

Similarly, the liable party should have some level of 

confidence in providing a PR guarantee.  

 

The objective of this study is threefold: 

 Determine which alternative PR calculation can 

be used to reduce the sensitivity to the 

meteorological variability; 

 Qualify the influencing parameters to reduce 

variability of the PR and 

 Quantify the probability of achieving each of the 

respective PR’s presented. 

  

2.  Literature Survey 
 

A qualitative survey was done, focusing on the risk 

categories associated with the PV facility life cycle, 

different performance metrics, followed by data 

variability in the simulations stage. 

 

A. Performance Calculation 

Ransom summarized some of the uncertainties affecting 

the performance ratio as indicated in Table 1 below [5, p. 

2]. 

 

Applying the Central Limit Theorem, Ransom has shown 

that at best, the PR measured between different sites can 

differ by 6%, mostly due to uncertainties of the irradiance 

sensor and the annual irradiance variability [5, p. 2]. The 

same would apply for determining the PR for any new 

project. Research conducted for this study has found 
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three options of determining the performance ratio metric. 

 
Table 1. Uncertainties affecting the PR [5, p. 2] 

 

VARIABLE FOR 

DIFFERENT 

SITES 

FOR THE 

SAME 

SITE 

Availability, Inverter Loss, 

PV Module performance 

Unknown Unknown 

Soiling ±1% 0% 

Irradiance Sensor 

Calibration 

±2% 0% 

Yearly insolation variability ±4% 0% 

Reference Module 

calibration 

±2% ±2% 

Module power class ±2.5% ±2.5% 

Degradation < -1%/y < -1%/y 

 

1) Performance Ratio. The PR is the conventional 

performance metric as defined by the 

International Electrotechnical Commission (IEC) 

as follows [6, pp. 1-2], [7, p. 14], [8, p. 18]: 

 
𝑃𝑅 = 𝑌𝑓 𝑌𝑟⁄  ( 1 ) 

𝑌𝑓 = 𝐸𝐴𝐶 𝑃𝑂⁄  ( 2 ) 

𝑌𝑟 = 𝜏𝑟 × (𝛴𝑑𝑎𝑦𝐺𝐼) 𝐺𝐼,𝑟𝑒𝑓⁄  ( 3 ) 

 

Where: 𝐸𝐴𝐶  is the energy measured at the delivery 

point expressed in kWh; 𝑃𝑂 is the DC output 

power at Standard Test Condition (STC) 

expressed in kWP; 𝜏𝑟 is the recording interval in 

hours; 𝐺𝐼 is the in-plane irradiation expressed in 

kWh/m
2
 and 𝐺𝐼,𝑟𝑒𝑓 is the reference in-plane 

irradiance, equal to 1 kW.m
-2

. 

 

A theoretical model was developed for System 3 

at the TEP Solar Test Yard in Tucson, Arizona 

and was calibrated by referring to the system 

performance data measured in 2013 [9].  

 

For purpose of demonstration, the hourly PR was 

calculated based on the hourly meteorological 

data contained in the long-term mean data set 

obtained from Meteonorm 6.1 and the 

performance results obtained from the system 

simulation in PVsyst 6.35 [10]. As shown in 

Figure 1 (Top), the PR exhibits a seasonal 

variability, which contributes to performance risk 

during acceptance testing [11, p. 3], [4, p. 1]. 

 

2) Temperature Corrected Performance Ratio 

(TCPR). The TCPR incorporates a temperature 

correction factor in the PR ratio. The following 

PR calculation method was obtained from sample 

contractual clauses used recently in South Africa 

[3, pp. 45-48]: 

 
𝑃𝑅𝑇𝐶 = 𝑌𝑓 (𝑌𝑟 × 𝑇𝐶 × 𝐷)⁄  ( 4 ) 

𝑇𝐶 = 1 − 𝛿(𝑇𝑟𝑒𝑓 − 𝑇𝑟𝑒𝑎𝑙) ( 5 ) 

𝐷 = (1 + 𝐷𝐹)𝑛 × 𝐷𝐹𝑓𝑖𝑛𝑎𝑙 ( 6 ) 

Where [3, pp. 45-48]: 𝑇𝐶 is a dimensionless 

temperature correction factor; 𝛿 is the 

temperature coefficient, a negative number 

expressed in %/°C; T_ref is the reference 

temperature expressed in °C; T_real is the 

measured average temperature; 𝐷 is a 

dimensionless degradation correction factor; 𝐷𝐹 

is the annual degradation specified by the 

module supplier; 𝑛 is the number of years 

following the commercial operation date and 

𝐷𝐹𝑓𝑖𝑛𝑎𝑙 is the degradation factor at the end of 

the evaluation period. 

 

Similar to the PR discussed previously, the 

hourly TCPR was calculated based on the long-

term mean data set and presented in Figure 1 

(Middle). It is observed that the introduction of 

the temperature correction does have a positive 

effect in reducing the seasonal variance. 

 

3) Weather Corrected Performance Ratio (WCPR). 

The PV module temperature is determined by a 

thermal energy balance directly related to the 

ambient temperature as well as a thermal loss 

factor, which has a variable component 

dependant on the wind speed [12], [10]. The 
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Figure 1. Variance of hourly PR (Top), TCPR (Middle) and 

WCPR (Bottom) over a period of one year 
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WCPR incorporates the effect of wind in the 

performance metric. The following calculation 

method has been extracted from the studies done 

by Dierauf et al [4, pp. 11-15]. 

 

𝑃𝑅𝑊𝐶 =
𝛴𝑖𝐸𝐴𝐶_𝑖

𝛴𝑖[𝑃𝑂(𝐺𝐼𝑖 𝐺𝐼,𝑟𝑒𝑓⁄ ) × 𝑇𝐶𝑖]
 ( 7 ) 

𝑇𝐶𝑖 = 1 − 𝛿(𝑇𝑐𝑒𝑙𝑙_𝑡𝑦𝑝_𝑎𝑣𝑔 − 𝑇𝑐𝑒𝑙𝑙_𝑖) ( 8 ) 

𝑇𝑐𝑒𝑙𝑙_𝑡𝑦𝑝_𝑎𝑣𝑔 = Σ[𝐺𝑃𝑂𝐴_𝑡𝑦𝑝_𝑗 × 𝑇𝑐𝑒𝑙𝑙_𝑡𝑦𝑝_𝑗]

/Σ[𝐺𝑃𝑂𝐴_𝑡𝑦𝑝_𝑗] 
( 9 ) 

𝑇𝐶𝑒𝑙𝑙 = 𝑇𝑚 + (𝐺𝐼 𝐺𝑆𝑇𝐶⁄ ) × ∆𝑇𝑐𝑛𝑑 ( 10 ) 

𝑇𝑚 = 𝐺𝐼 × ℎ + 𝑇𝑎 ( 11 ) 

ℎ = 𝑒𝑥𝑝(𝑎 + 𝑏 × 𝑊𝑆) ( 12 ) 

𝐸𝑁𝐷𝐶𝑖 = 𝑃𝑂(𝐺𝐼𝑖 𝐺𝐼,𝑟𝑒𝑓⁄ ) × 𝑇𝐶𝑖 × 𝑡𝑖 ( 13 ) 

𝑃𝑅𝑊𝑒𝑎𝑡ℎ 𝐶𝑜𝑟𝑟 = 𝛴𝑖𝐸𝑁𝐴𝐶𝑖 𝛴𝑖𝐸𝑁𝐷𝐶𝑖⁄  ( 14 ) 

 

Where [4, pp. 11-15]: 𝑇𝑐𝑒𝑙𝑙_𝑖 is the cell 

temperature computed from the meteorological 

data; Tcell_typ_avg is the average irradiance-weighted 

cell temperature in one year of the project weather 

file; Tcell_typ_j is the calculated cell temperature per 

hour; j is each hour of the year; Tm is the PV 

module’s back-surface temperature expressed in 

°C; ℎ is the convection heat transfer coefficient 

expressed in °C m²/kW; a is an empirical constant 

for temperature increase due to sunlight presented 

in Table 5 below; b is an empirical constant for 

effect of wind speed; WS is the measured wind 

speed, corrected to a height of ten meters, 

expressed in m/s and ΔTcnd is the conduction 

temperature drop.  

 

Similar to the PR and TCPR discussed previously, 

the hourly WCPR was calculated based on the 

long-term mean data set and presented in Figure 1 

(Bottom). It is observed that the introduction of 

the temperature correction and normalisation with 

the average module cell temperature does have a 

significant effect in reducing both the seasonal 

variance and short term hourly variance compared 

to the conventional PR. 

 

The following section will discuss the respective 

performance parameters which can contribute to 

the variance and the resulting uncertainty of the 

performance ratio metric in general. 

 

B. Variation of the Performance Ratio 

1) Measurement Uncertainty and Inaccuracy. 

Although some meteorological databases 

combine satellite derived data with ground 

measured meteorological data, these models 

inherently still contain uncertainty due to the 

different atmospheric states such as cloud cover, 

aerosols or water vapour [13, p. 2], [14, p. 5]. 

 

A study indicated that high quality pyranometers 

can have a typical error between -10% to 2.5% 

and perheliometers, which are slightly more 

accurate, can expect a typical error ranging 

between -2.5 to 2.5% [15, p. 1080].  

 

2) Inter-annual Variability and Representativeness 

of the Monitoring Period. A study by Pitz-Paal 

et al. indicated that 7 to 10 years of 

measurements are required to reduce the 

deviation to the long-term mean within 5% [16, 

p. 7]  

 

It is observed from Pitz-Paal’s study that the 

commercially available long term mean data 

sets, such as Meteonorm, would inevitably also 

generally have a deviation within 5%, which is 

good for long term yield forecasts, but not good 

at all for determining the real minimum and 

maximum meteorological thresholds that would 

directly influence the PR for that particular 

evaluation period. 

 

3) Transposition to Plane of Array. In order to 

calculate the energy conversion of the solar PV 

model, the irradiance needs to be adjusted for 

the amount of incident irradiance that will reach 

the solar Plane of Array (POA), known as the 

Direct Normal Irradiance (DNI) [17, p. 434]. 

This transposition introduces a further margin of 

error in the order of 2 – 5% [18, pp. 7-8]. 

 

4) Simulation. Studies by Thevenard et al. [17, p. 

436] and Schnitzer [18, pp. 7-8] indicated that a 

typical, well-defined model still has an expected 

uncertainty of 3 to 5%. Other than the 

meteorological data discussed before, the single 

highest remaining uncertainty during simulation 

is contributed by the validity of the PV 

Module’s performance characteristics 

represented in the theoretical model [12, p. 15]. 

The PV modules form a majority of the capital 

investment, thus for the purpose of improving 

the PR, the manufacturer and module selection 

is a key risk mitigation strategy and well worth 

the extra effort. 

 

5) DC to AC conversion efficiency. The inverter’s 

electrical configuration has both an effect on the 

overall efficiency of the PV system as well as 

the reliability. There are three main inverter 

configurations that can be considered for the 

electrical design [19, p. 229]: Centralized 

inverter with multiple DC inputs on a single DC 

bus; Parallel inverters with separate DC busses 

and lastly Parallel inverters with a common DC 

bus. A case study by He et al. revealed that the 

parallel configuration with a common DC bus 

can improve the inverter system performance 

ratio by up to 1.5%, compared to a single central 

inverter [19, p. 333]. 

 

6) Thermal Derating Loss. The efficiency of a PV 

module is directly affected by the cell 

temperature, decreasing in efficiency as the 

temperature rises. The reduction in efficiency 
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can be calculated as a function of the temperature 

coefficient, which is published in the PV 

module’s technical specifications and the module 

temperature [12, p. 11]. The PV module 

temperature is determined by the energy balance 

between the ambient temperature and the internal 

cell temperature due to the incident irradiance and 

the cell efficiency [10]. It is this relationship that 

contributes to the sensitivity of the performance 

ratio to the meteorological conditions and 

resulting seasonal variance. 

 

C. Probability 

Two separate studies by Dobos et al. [20, p. 3] and 

Thevenard et al. [17, p. 440] respectively determined the 

probabilistic irradiance and yield by using an empirical 

CDF constructed by simulating the yield for multiple 

meteorological years. Dobos et al. has shown that the 

empirical CDF for the GHI and resulting system yield can 

be compared with the CDF of a Normal distribution [20, p. 

3].  

 

The case study below will utilize the same method to 

determine the statistical distribution of the monthly PR.  

 

3. Case Study: Simulation of a PV facility for 

PR calculation 
 

The following sections will demonstrate the statistical 

variability of the PR, TCPR and WCPR by performing 

multiple simulations using the calibrated theoretical model 

discussed previously and each meteorological year 

between 1961 and 1990, which were obtained from the 

National Solar Radiation Database (NSRDB) [21]. 

A. Probability distributions for PR 

Figure 3 indicates the monthly PR calculated for System 

3 at the TEP Solar Test Yard in Tucson, Arizona utilizing 

the previously discussed calibrated theoretical model and 

referring to multi-year NSRDB and long-term mean 

meteorological years respectively. 

 

The multiple PR’s calculated for each month, creates a 

statistical distribution, as indicated by the empirical 

Cumulative Distribution Function (CDF) for the January 

PR values in Figure 2. Similar to the representation of the 

statistical yield by Thevenard [17], the statistical 

distribution of the PR has been presented as a Normal 

(Gaussian) CDF. The P90 value, with 90% chance of 

achievement, can be calculated from the CDF, indicated 

here as a PR of 0.70957. Given the CDF of the PR, the 

probability of achieving the long-term mean PR for 

January can be calculated as well. For this example, the 

month of January would have an 81.5% probability of 

achieving the expected PR calculated from the long-term 

mean data set. 

 

The top graph in Figure 4 summarizes the probabilistic 

PR for each month, based on the 30-year simulations. 

Each bar indicates the P95, P90, P10 and P5 thresholds, 

compared to the long-term mean PR. 
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Figure 2. Monthly PR calculated for System 3, TEP solar yard, 

Tucson, AZ  

Figure 3. CDF of PR calculated for January, 1961 to 1990 
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B. Probability distributions for TCPR 

Similar to the multi-year simulations done for the PR, the 

TCPR is presented in Figure 4. It is observed that the 

TCPR significantly reduces the seasonal- and inter-annual 

variance, compared to the conventional PR shown in the 

shaded area for ease of reference. 

 

C. Probability distributions for WCPR 

The bottom graph in Figure 4 indicates the probabilistic 

WCPR for each month. It is observed that the introduction 

of the temperature correction and normalisation with the 

average module cell temperature does have a significant 

effect on the seasonal- and inter-annual variance, 

compared the conventional PR and has a slightly lower 

variance compared to the TCPR. 

 

Figure 5 shows a summary of the quantitative analysis of 

the respective performance metrics in this study. First, the 

theoretical model was developed and calibrated with 

reference to the measured meteorological- and system 

yield records for one specific reference year. The same 

model was then used to determine the PR for each month 

from 1961 till 1990 by referring to the NSRDB 

meteorological data set. The long-term mean data set from 

Meteonorm were used to calculate the expected PR, which 

typically would form the basis of the guaranteed PR. The 

multi-year PR values presented a statistical distribution, 

from which the probabilistic PR, TCPR and WCPR could 

be determined. 

 

4.  Conclusion 
 

The introductory section established a need to determine 

the risk associated with performance guarantees for solar 

PV projects. It was determined that the performance ratio 

is a well-defined performance metric, which has been 

standardized in the industry. 

 

The qualitative research stage has presented numerous 

performance parameters that can influence the 

performance ratio metric, the most influential summarized 

as follows: 

1) Measurement uncertainty; 

The advantages of long-term satellite derived data 

have been presented and its importance 

established for a reliable meteorological data set. 

2) Inter-annual variability; 

The long-term mean data set has been 

demonstrated as a very reliable resource estimate 

for long term yield estimations. However due to 

its long term averaged nature, the reduced 

minimum and maximum deviations is obscuring 

the risk of underperformance for individual time 

periods under review. The study made reference 

to separate studies which had made use of a 

multi-year simulation process to construct a 

statistical distribution of the system yield. 

3) Simulation; 

It was concluded that PV module performance 

models need to be validated by reputable third 

parties and since the PV modules forms a 

significant part of the capital investment, its due 

diligence is worth the extra effort. 

4) DC to AC conversion efficiency and 

The different inverter configurations were 

evaluated for both efficiency and reliability. It 

was demonstrated that the parallel inverter 

configuration with a single DC bus would be 

most beneficial for both efficiency and 

reliability. 

5) Thermal derating. 

The PV module’s performance sensitivity to 

temperature is pivotal in the risk mitigation 

demonstrated by the respective performance 

ratio metrics discussed in this study. It was 

shown that the PV module temperature is 

governed by an energy balance between external 

energy being applied through the solar 

irradiance and the PV module’s capability to 

convert this to useful energy, which is 

electrically extracted. The balance of energy is 

shed as heat. 

 

The quantitative analysis stage of the research involved a 

multi-year simulation to construct a statistical distribution 

of the system yield and performance. A Normal 

distribution was used to represent the probability 

distribution of the respective yearly data sets, for each 

month and for each type of performance ratio calculation. 

The probability was quantified for achieving the 

performance metrics, which were calculated with a long-

term mean data set from Meteonorm. The case study 

demonstrated the quantified risk of not achieving the 

respective PR, TCPR and WCPR’s which were 

calculated with the long term mean data set.  

 

It is observed that although the respective TCPR and 

WCPR do reduce the variance caused by the 

meteorological conditions, the corrected PR metric, on its 

Figure 5. Overview of quantitative analysis of PR, TCPR and 

WCPR performance metrics 
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own, is not a sufficient mitigation against a performance 

guarantee.  

 

By further evaluating the statistical distribution of the 

multi-year simulation done, the P90, P95, P10 and P5 

probabilistic values were determined. The PR, TCPR and 

WCPR, which were calculated from the long-term mean 

data set was compared with the multi-year statistical 

results, which indicated a risk of not achieving the long-

term mean derived performance metrics. In order to reduce 

the probability of underperformance, the mitigated 

performance guarantees were constructed by referring to 

the P90 values of the multi-year simulation instead. 
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