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Abstract. The distribution grid has been the source of an 

increased amount of electricity production in recent years. 
Coupled with the adoption of open energy markets, this event 

has significantly complicated the powerflows on the distribution 

grid, urging network operators to invest in advanced control and 

monitoring tools in order to optimize the efficiency and 

reliability of the system. In this context, a method to estimate the 

connection status of distributed generators and the system 

topology is proposed in this paper, the goal being to obtain up to 

date information on the power system network’s configuration. 

This will enable grid operators to have visibility on the status of 

the distribution grid and react proactively to problematic 

situations that might arise. The proposed topology estimation 

method relies on injected pilot signals through generators 

feeding in power. Pilot voltage stimulations are injected from 

distributed generators and the induced currents effects are 

measured at several nodes in the system. The measured data is 

evaluated through correlation, and a weighed least-square 

algorithm, applied to the network’s dynamic model, estimates 

those unknown parameters and provides an accurate snapshot of 

the power network topology. The performance of the proposed 

method is evaluated on a small scale distribution network. 
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1. Introduction 
Measurement and network parameter errors have a 

negative impact on the data needed by the power system 

operator for operation and control.  Such errors can be due 

to transmission line parameters, circuit breaker status or 

Distributed Generator (DG) connection status [1]. State 

Estimation (SE) and other studied control mechanisms 

such as network topology reconfiguration [2], adaptive 

protection and short circuit calculation tools [3] use this 

model in order to optimize powerflows and guarantee 

proper behavior of protective devices.  

State Estimation is performed under the assumption that 

network topology is fixed and assessed correctly. 

However, the power network configuration can change for 

numerous reasons. Also, other parameters such as 

transmission lines impedances and transformer tap 

position can vary over time as well. The busbar 

connections can also be modified by changing the status 

of the circuit breakers on the transmission lines. In recent 

years, with the addition of large amount of distributed 

energy sources on the power grid, the concept of 

intentionally modifying the network’s topology has been 

studied [2]. Several topology estimation solutions have 

been proposed, and they are mostly based on alterations of 

existing state estimation. Some methods analyze the 

residual of state estimation and identify correlation 

patterns linking residuals to topology configurations [4-5]. 

This analysis is performed in parallel with state 

estimation, and is added as an extra step to the algorithm. 

Other methods apply an extended state vector and use 

constraints on the system parameters in order to estimate 

the unknown variables [6-7].  

In this paper, topology estimation is performed based on 

active identification [8]. The voltage is distorted at the DG 

by injecting a broad frequency pilot signal, and the 

resulting current distortions are processed through 

correlation with the injected voltage signals. Active 

identification of the impedance at the inverter’s Point of 

Common Coupling (PCC) for detecting islanding 

conditions has been researched in numerous studies [9-

10]. In this research the harmonic rich currents generated 

at the inverter are additionally evaluated at neighboring 

nodes in the power network. Based on the research in 

[11], Pseudo Random Binary Sequences (PRBS) signals 

are used to create a broad-spectrum stimulation. Pilot 

signals are sent from several generators in the power 

system and the induced currents are measured at several 

locations. All measurement results are then combined in 

equations using the network’s admittance matrix. Finally a 

Weighed Least Square (WLS) algorithm is applied in 

order to infer the unknown system variables. 

The proposed active identification method using PRBS 

stimulation signals is covered in Section 2. A system 

model is presented, and a characterization method using 

several measurements is described. In Section 3, a WLS 

algorithm is applied in order to extract the unknown 

parameters of the system’s admittance matrix. Finally, 

simulation results for a test system are provided in Section 

4, and an analysis of system performance and result 

accuracy is provided. 
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2. Topology Identification through Active 

Identification 

2.1 Pilot Signal Properties 

Pseudo-Random Binary Sequences are binary streams 

that are deterministic but ‘pseudo-random’ over their run 

length. They have been used as pilot signals for system 

characterization in many engineering fields [12]. For 

Maximum Length Sequences (MLS), for a given seed, a 

polynomial of length L will generate a deterministic 

sequence of ‘1’s and ‘0’s of 2𝐿 − 1 elements [16]. 

Depending on the relationship between the code-length, 

sampling frequency and code frequency, the PRBS 

exhibits a ‘white noise-like’ spectrum for a defined 

frequency range, with zeros occurring at multiples of the 

PRBS clock sampling frequency. The code length and its 

sampling frequency limit the resolution of the spectrum 

that will be stimulated. The logic required for PRBS 

implementation consists of shifters and XORs and can 

easily be implemented in software. Another advantage of 

PRBS is that even very low amplitude pilot signals can 

produce accurate estimation results, since their effect is 

aggregated over a complete run length. 

The PRBS signal can be detected in a high interference 

environment by a correlator who is aware of its sequence. 

The tasks depicted in Figure 1 summarize the operations 

to be performed for impulse response determination.  

 

 

 

 

 

 

 

 
Figure 1: Impulse response determination setup 

 

By applying a Fourier transform to the obtained impulse 

response, the transfer function of the system in frequency 

domain is established.  

 

2.2 Power System Model under Study 

The distribution network topology depicted in Figure 2 

is considered for the application of the proposed 

identification algorithm. It consists of a power generator 

on a high voltage network connected to a voltage 

transformer distributing power through two feeders. The 

feeders are branched twice to distribute power to the 

loads. The network comprises three switches for topology 

reconfiguration, seven nodes, and six transmission lines. 

The complete network can be fed through feeder 1, feeder 

2 or both depending on the status of the switches S1, S2 

and S3. Additionally a meshed network can be produced if 

all switches are connected. DG1 and DG3 are monitoring 

DGs and periodically inject PRBS sequences on the grid. 

The connection status of DG5 and DG6 is intermittent and 

not known by the operator. The objective of the topology 

identification algorithm is to evaluate the status of the 

switches S1, S2 and S3 as well as the connection status of 

DG5 and DG6, represented by the switches D1 and D2. 

The transmission lines are modelled as resistive-inductive 

components, which is accurate enough to model the 

dynamics of the transmission lines for the considered 

frequency ranges and cable lengths.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: Distribution network model used for system identification 

 

For typical residential loads, the relative high equivalent 

impedance has a minimal impact on harmonic current 

flows and ignoring it doesn’t modify the estimations 

considerably. The equivalent impedance of the MV 

transformer and upstream grid is chosen according to [13], 

a resistive-inductive model is used for the substation 

transformer. The electrical parameters of the system 

components are described in Table 1 in Section IV.  

 

2.3 Active Identification 
PRBS patterns are injected from DG1 and DG3, and the 

resulting current patterns are measured at various 

locations in the network, marked with a red dot for DG1 

and green dot for DG3 in Figure 2. Previous research in 

[14] has shown that the presence of the PRBS can be 

detected through continuous correlation with the PRBS 

code and a correlation peak locates the instant and the 

duration of the received pattern. Subsequently, the transfer 

function relating the PRBS voltage patterns to the 

measured current patterns can be established. Equation (1) 

shows the results of this operation for the described 

model, ℎ(𝑛) being the transfer function of the propagation 

path and 𝑅𝑠𝑟 the autocorrelation of the stimulation:  

 

 
𝑣𝑠(𝑡) ∗ 𝑖𝑟(𝑡) = ∑ 𝑣𝑠(𝑛)𝑖𝑟(𝑛 + 𝑚) 

𝑒𝑛𝑑_𝑝𝑟𝑏𝑠_𝑖𝑑𝑥

𝑛=𝑠𝑡𝑎𝑟𝑡_𝑝𝑟𝑏𝑠_𝑖𝑑𝑥

 

 

                       = ∑ ℎ(𝑛)𝑅𝑠𝑟(𝑚 − 𝑛)

𝑒𝑛𝑑_𝑝𝑟𝑏𝑠_𝑖𝑑𝑥

𝑛=𝑠𝑡𝑎𝑟𝑡_𝑝𝑟𝑏𝑠_𝑖𝑑𝑥

    

(1) 

Transposed to the frequency domain, equations (2-3) 

are obtained: 

 

 𝑉�̅� ∙ 𝐼𝑟(𝜔) =  𝐻𝑖(𝜔)|𝑉𝑠(𝜔)|2 (2) 
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𝐻𝑖(𝜔) =  

𝑉�̅� ∙ 𝐼𝑟(𝜔)

|𝑉𝑠(𝜔)|2
 

(3) 

 

 

Equation (3) indicates the dynamic relationship between 

the sender voltage and receiver current. It represents the 

spectral dependency between the injected voltage 

harmonics with the resulting current harmonics at the 

receiver.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3: Electrical representation of distribution network model  

 

The electrical model of the system under study is 

depicted in Figure 3. The output filters of all DGs are LC 

filters and their admittances Yf are assumed identical. The 

unknown parameters in the system are switch settings S1- 

S3 and DG connection status D1-D2. These are binary 

unknowns, and their value represents the connection status 

of the switch/DG. When the switch S1 is open, the 

parameter S1 on the Ymatrix, has the value 0, which 

represents an open connection between node 1 and node 2. 

For a closed connection, S1 takes the value 1, and the 

admittance of the line will be the parameter used in the 

admittance matrix.  

The line impedances Y1-Y6, consist of a resistive and an 

inductive component. The admittance matrix of the 

network is represented by equations (4-11). 

 
𝑌𝑚𝑎𝑡𝑟𝑖𝑥                                                                                                                                       (4)                   

=

[
 
 
 
 
 
 
 
 
 𝑌𝑠𝑢𝑚1 −𝑆1 ∙ 𝑌5 −𝑆2 ∙ 𝑌6 0 0 0 0

−𝑆1 ∙ 𝑌5 𝑌𝑠𝑢𝑚2 −𝑆3 ∙ 𝑌𝑠3 −𝑌1 −𝑌2 0 0

−𝑆2 ∙ 𝑌6 −𝑆3 ∙ 𝑌𝑠3 𝑌𝑠𝑢𝑚3 0 0 −𝑌3 −𝑌4

0 −𝑌1 0 𝑌𝑠𝑢𝑚4 0 0 0

0 −𝑌2 0 0 𝑌𝑠𝑢𝑚5 0 0

0 0 −𝑌3 0 0 𝑌𝑠𝑢𝑚6 0

0 0 −𝑌4 0 0 0 𝑌𝑠𝑢𝑚7]
 
 
 
 
 
 
 
 
 

 

  

 𝑌𝑠𝑢𝑚1 = 𝑌𝑡 + 𝑌5 ∙ 𝑆1 + 𝑌6 ∙ 𝑆2 (5) 

 

 𝑌𝑠𝑢𝑚2 =  𝑌5 ∙ 𝑆1 + 𝑌1 + 𝑌2 + 𝑌𝑠3 ∙ 𝑆3 + 𝑌𝑓 ∙ 𝐷1 
 

(6) 

 

 𝑌𝑠𝑢𝑚3 =  𝑌6 ∙ 𝑆2 + 𝑌3 + 𝑌4 + 𝑌𝑠3 ∙ 𝑆3 + 𝑌𝑓 ∙ 𝐷2 

 
(7) 

 

 𝑌𝑠𝑢𝑚4 =  𝑌1 + 𝑌𝑓 (8) 

 
 

 𝑌𝑠𝑢𝑚5 =  𝑌2 + 𝑌𝑓 

 
(9) 

 

 𝑌𝑠𝑢𝑚6 =  𝑌3 + 𝑌𝑓 

 
(10) 

 

 𝑌𝑠𝑢𝑚7 =  𝑌4 + 𝑌𝑓 (11) 

 

DG1 and DG3 periodically inject PRBS patterns on the 

power network. The injections are orthogonal [12], thus 

their interference will be minimal if concurrent injection 

from two DGs happens. At DG1-DG4 and the transformer 

substation, a receiver correlates the incoming current with 

the PRBS codes of the senders. Upon arrival of the 

stimulation, a correlation peak is detected [14]. Using 

equations (3), the transfer function between the emitter 

and the receiver can be established.  

The cross-correlation of PRBS with uncorrelated signals 

is minimal, thus for the elaboration of the system 

equations to be solved it will assumed that the PRBS is 

the only stimulation present for the considered frequencies 

during its injection. For the seven node system depicted in 

Figure 2, the relationship between Vsender and Ireceiver 

can be expressed based on standard methods [15]. For 

instance,  𝑉𝑠𝑛𝑑4 represents the voltage spectrum created 

at node 4, and 𝐼𝑟𝑐𝑣1−4 are the current spectrum measured 

at node 1 due to 𝑉𝑠𝑛𝑑4.  𝑉𝑠𝑛𝑑4 is the pattern injected at 

the DG1, and is known in advance for each monitoring 

DG. 𝐼𝑟𝑐𝑣4 is detected, measured and processed at the 

receiver when the PRBS pattern is incoming. Transposing 

𝑉𝑠𝑛𝑑4 and 𝐼𝑟𝑐𝑣4 to the Fourier domain, we obtain for 

each frequency a set of equations relating those 

measurements at nodes 1, 4, and 5, by linking them to the 

unknown parameters of the admittance matrix. The same 

operation can be performed with DG3 and a total set of 6 

equations can be established at each frequency. The 

system to be solved is shown in matrix (12):  

 

[
 
 
 
 
 
 

0
0
0

𝑉𝑠𝑛𝑑4
0
0
0

0
0
0
0
0
0
0

0
0
0
0
0

𝑉𝑠𝑛𝑑6
0

0
0
0
0
0
0
0]
 
 
 
 
 
 

= 𝑌𝑚𝑎𝑡𝑟𝑖𝑥−1 ∙  

[
 
 
 
 
 
 
𝐼𝑟𝑐𝑣1−4

0
0

𝐼𝑟𝑐𝑣4−4

𝐼𝑟𝑐𝑣5−4

0
0

0
0
0
0
0
0
0

𝐼𝑟𝑐𝑣1−6

0
0
0
0

𝐼𝑟𝑐𝑣6−6

𝐼𝑟𝑐𝑣7−6

0
0
0
0
0
0
0]
 
 
 
 
 
 

 

               (12) 

The equations linking measurements to unknown 

variables have established and in the next section, a 

Weighed-Least-Squares method will be applied to 

estimate the unknown parameters in the system.  

3. Solving the System Equation using WLS 

3.1 Overview of WLS  

A measurement model to be solved can be written as:  

 

 𝑧 = ℎ(𝑡𝑝,𝑐𝑝) + 𝑒 

 

(13) 

where 𝑧 is the measurement vector, ℎ(𝑡𝑝,𝑐𝑝)  is the 

nonlinear function relating the measurements to the 

system parameters [16], consisting in our case of topology 

and connection parameters. 𝑡𝑝 is the vector containing 

network topology and connection parameters, 𝑐𝑝 is the 

S2 

Y5 Y6 

Y1 Y2 Y3 Y4 

Yf  S3 

Yf  Yf  Yf  Yf  

Yf  

Yt 

S1 

S4 S5 
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vector of DG connection parameters, 𝑒 is the vector of 

measurement errors. 

There are m measurements and n variables to be 

determined, with the over-specification constraint that n < 

m. The WLS parameter estimation can be formulated 

mathematically as an optimization problem with a 

quadratic objective function with additional equality 

constraints implemented as pseudo-measurements, the 

residual being defined as: 

 

 𝑟 =  𝑧 − ℎ(𝑥, 𝑝) 
 

(14) 

The goal is to minimize the objective function: 
 

 
𝐽(𝑥, 𝑝) =  ∑

(𝑧𝑖 − ℎ𝑖(𝑥))2

𝑅𝑖𝑖

𝑚

𝑖=1

 

 

(15) 

                                      = [𝑧 − ℎ(𝑥, 𝑝)]𝑇𝑅−1[𝑧 − ℎ(𝑥, 𝑝)] 
 

where 𝑅 is the covariance matrix related to the 

estimated accuracy of each measurement. The minimum 

of the objective function can be obtained if: 
 

 
𝑔(𝑥) =

𝑑𝐽(𝑥)

𝑑𝑥
= −𝐻𝑇(𝑥)𝑅−1[𝑧 − ℎ(𝑥)] = 0 

 

(16) 

𝐻(𝑥) being the Jacobian of matrix ℎ(𝑥) 

 

 
𝐻(𝑥) = [

𝑑ℎ

𝑑𝑥
] 

(17) 

   

Expanding g(x) into its non-linear Taylor series, we 

obtain: 

 𝑔(𝑥) = 𝑔(𝑥𝑘) + 𝐺(𝑥𝑘)(𝑥 − 𝑥𝑘) + ⋯ = 0 
 

(18) 

Neglecting the higher order terms leads to an iterative 

solution scheme known as the Gauss-Newton method as 

shown below: 

 

 𝑥𝑘+1 = 𝑥𝑘 − [𝐺(𝑥𝑘)]−1 ∙ 𝑔(𝑥𝑘) 

 

(19) 

where 𝑘 is the iteration index, 𝑥𝑘 is the solution vector 

at iteration k 

 
𝐺(𝑥) =

𝑑𝑔(𝑥𝑘)

𝑑𝑥
= 𝐻𝑇(𝑥𝑘) ∙ 𝑅−1 ∙ 𝐻(𝑥𝑘) 

 

(20) 

 𝑔(𝑥𝑘) = −𝐻𝑇(𝑥𝑘) ∙ 𝑅−1 ∙ (𝑧 − ℎ(𝑥𝑘)) 
 

(21) 

The iterative process is usually stopped once 

convergence is assumed, that is for a threshold 𝜖, once 

 

 |∆𝑥𝑘| ≤ 𝜖 (22) 

3.2 WLS algorithm on model under study 

The described WLS algorithm will be adapted to the 

system model. The measured parameter is the transfer 

function of the system 𝐻(𝜔), which corresponds to the 

relationship between the stimulation at the source and the 

current harmonics at the receiver. The function relating 

measurements to system parameters is the modified 

admittance matrix (4) which contains information on the 

Switch settings 𝑡𝑝 and DG connection status 𝑐𝑝. 

 

 ℎ(𝑡𝑝,𝑐𝑝) = 𝑌𝑚𝑎𝑡𝑟𝑖𝑥(𝑡𝑝,𝑐𝑝) 
 

(23) 

These parameters are estimated at first, and the 

estimation is adjusted iteratively. The Jacobian of the 

inverse of the admittance matrix is computed for each 

parameter and the iterative process modifies the unknown 

variables in order to minimize the residual. Thus, the 

objective function is minimized according to the equations 

(14-22). The weight (inverse of the covariance) for each 

measurement is set based on the reliability of the 

measurement, which in turn depends on its Signal-to-

Noise Ratio (SNR). The value for 𝑅𝑖𝑖, corresponding to 

weight, can be dynamically computed for each 

measurement [14]. The WLS algorithm is repeated for a 

set of frequencies, in order to provide additional data 

points for confirming the switch settings.  

In the studied system, there are two PRBS injectors, 

acting as senders, and five receivers, detecting and 

measuring each of the current stimulations produced by 

these senders. There are 5 unknowns for the switch and 

DG connection settings, and 6 equations linking those 

unknowns for each frequency, as depicted in (12).  

The model and the proposed algorithm are run on 

Simulink & Matlab is Section 4, and an analysis of the 

outcome and performance provided.  

4. Simulations  

Simulations are based on the system described in 

Section II and Section III. The model is based on 

Simulink/Matlab for the PRBS injection/measurement and 

WLS algorithm. The characteristics of the system to be 

estimated, including stimulation parameters and receiver 

settings are listed in Table I. The parameters to be 

estimated are marked in italics. The network considered is 

the one depicted in Figure 2. 

 
Table I. – Simulation Settings 

Stimulation parameters  

PRBS code length 4093 

PRBS 1 𝑥12 + 𝑥8 + 𝑥2 + 𝑥 + 1 

PRBS 2 𝑥12 + 𝑥6 + 𝑥4 + 𝑥 + 1 

PRBS 3 𝑥12 + 𝑥6 + 𝑥5 + 𝑥3 + 1 

PRBS 4 𝑥12 + 𝑥7 + 𝑥6 + 𝑥2 + 1 

Sampling frequency 50 KHz 

Carrier frequency 12800 Hz 

Codes per fundamental 

cycle 

256 

Electrical system params  

Line 1 impedance Zl1 0.1 Ω , 2 mH 

Line 2 impedance Zl2 0.3 Ω , 6 mH 

Line 3 impedance Zl3 0.2 Ω , 1 mH 

Line 4 impedance Zl4 0.1 Ω , 2 mH 

Line 5 impedance Zl5 0.3 Ω , 3 mH 

Line 6 impedance Zl6 0.1 Ω , 1 mH 

Inverter Output filter Zc - 

Zf 

5 Ω , 9.45e1µF  - 10 mH 

Transformer Impedance Zt 0.12 Ω , 20 mH 

Unknown parameters  

Switch settings  SW1 = 1, SW2 = 0, SW 3= 1 

DG connection setting  DG1=0, DG2 = 1 
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Line parameters are based on the power network in 

Luxembourg operated by Creos. The first step of the 

algorithm is the transfer function estimation following the 

PRBS injections, based on equation (3). The measurement 

locations in the grid are marked in red/green in Figure 2.  

Figure 4 shows the results of transfer function 

identification from source DG1 (node 4) and DG3 (node 

6). The straight line corresponds to the theoretical value to 

be obtained based on the calculated value of the 

equivalent model. The noisy/colored lines are the results 

obtained through PRBS injection and correlation as 

described in equation (3). As stated in Section III, the 

weights associated to these noisier measurements will be 

lower in the WLS algorithm. The measurements close to 

the PRBS source will have higher impact during WLS, 

while measurements electrically far from the source 

provide low reliability data, associated with a small 

weight. 

 
Figure 4:  Theoretical and estimated transfer function from 

source nodes to destination nodes 

 

Data is collected and processed for both PRBS sources, 

then evaluated. Once the transfer functions are 

established, they will be used for estimating the unknowns 

of the system. The data from the simulation is processed 

through WLS, using the Ymatrix and the equations 

elaborated in Section II and III. The results of each of the 

WLS runs is listed and analyzed In Table II. In the test 

settings, the switch settings are set to ‘1’ ‘0’ ‘1’, and the 

DG settings to ‘0’ ‘1’: the complete network is powered 

by the left feeder, and the DG on node 2 is disconnected. 

For the initial ‘guess’ of the WLS algorithm, all 

parameters are set to 0. The algorithm is run for the 

frequency range 80-2000Hz, with 100 Hz intervals. The 

results obtained through this procedure are shown in Table 

II. The weighted average for each of the estimations at the 

bottom of the table corresponds to the result for each 

frequency, compounded by a factor inversely proportional 

to the residue of the WLS run. Since, badly converging 

runs usually end with higher residues, their impact on the 

final results is reduced without additional steps of data 

filtering and processing.  

 

Table II. – Topology Estimation Results 
 S1 S2 S3 D1 D2  

 Real Topology values to be found  

 1 0 1 0 1  

 Initial WLS parameter setting  

 0 0 0 0 0  

Frequency WLS result residue 

80 0.99        0.01        0.97        0.01        0.86 0.16 

180 0.99        0.03        0.57        0.08        0.91 0.58 

280 0.99        0.01        0.99        0.01        0.94 0.30 

380 0.78        0.01        0.99        0.01        0.99 0.24 

480 0.88        0.01        0.99        0.09        0.99 0.65 

580 0.99        0.01        0.99        0.01        0.99 0.32 

680 0.75        0.01        0.88        0.01        0.99 0.64 

780 0.79        0.15        0.99        0.09        0.91 1.02 

880 0.99        0.01        0.99        0.01        0.70 0.87 

980 0.89        0.01        0.78        0.03        0.94 1.00 

1080 0.88        0.01        0.94        0.88        0.05 4.10 

1180 0.84        0.01        0.91        0.08        0.91 1.36 

1280 0.75        0.01        0.89        0.11        0.94 0.73 

1380 0.99        0.01        0.99        0.01        0.99 0.07 

1480 0.69        0.01        0.93        0.01        0.99 0.29 

1580 0.81        0.01        0.95        0.10        0.98 0.94 

1680 0.69        0.01        0.99        0.21        0.99 1.92 

1780 0.86        0.10        0.78        0.99        0.01 5.94 

1880 0.79        0.01        0.86        0.23        0.67 1.64 

1980 0.84        0.11        0.93        0.01        0.99 1.58 

Weighted 

average 

0.94        0.03        0.96        0.08        0.91  

 

The results of the final weighted average show that the 

switch settings are estimated correctly, assuming that the 

final result will be rounded up/down. Simulations for 

other switch settings have also provided accurate 

estimations, without addition of other data analysis or 

heuristics to improve convergence accuracy. For some 

frequencies, such as 1080 Hz, the WLS algorithm has 

converged to the wrong value. This can be attributed to 

the highly non-linear nature of the system, since a 

parameter jump in the iterative procedure can lead the 

parameter to an erroneous convergence. Nevertheless this 

error can be tolerated, since the majority of the 

frequencies converge correctly and since the bad results 

typically end the WLS run with higher residues, making 

their contribution to the weighted average less prevalent.  

5. Conclusions  

The extensive addition of DG to the distribution 

network is making an active monitoring and control of its 

operations increasingly necessary. We have proposed in 

this research a method for estimating the topology of the 

power network using pilot signals. We inject predefined 

coded signals from selected DGs, and measure the current 

response of these signals at several nodes on the 

distribution network. The combination of these 

measurements allows us to obtain a good estimate for the 

unknown switch and DG connection parameters. The 

proposed method can be applied to any other unknown 

parameters of the system, as long as its effect on the 

stimulations can be assessed in the admittance matrix. 

Thus estimation of line parameters, variable large loads or 

transformer tap settings can be contemplated and will be 

addressed in further research.  

The tool described in this research would be a valuable 

asset to enable utility providers to modernize the complex 

distribution network, without the addition of extensive 

communication infrastructure. It provides a novel 

monitoring solution that is complementary to traditional 

EMS tools. 
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