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Abstract. This paper studies the optimal design and operation 

of new energy equipment including renewable energy sources for 

prosumer industries. In order to augment the interest of industries 

in performing energy actions, the economic parameters of the 

investment are analysed and the risk related to it considering the 

uncertainty in energy markets is evaluated. A two-stage 

optimization approach is proposed considering the whole lifetime 

of the energy equipment and an uncertainty analysis performed 

through the evaluation of the deterministic model under Latin 

Hypercube Samples of uncertain parameters. A case study based 

on a real industry is presented, whose results expose the 

robustness of the optimization methodology and the acceptable 

risk of investing in renewable energy sources and energy 

equipment for prosumer purposes. 
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1. Introduction 

 
The 4th industrial revolution that is taking place is 

positioning this sector as key for the achievement of a 

sustainable energy market through the adoption of smart 

energy management strategies. However, the energy use in 

industrial enterprises is under-researched [1], and the 

existing studies focus primarily on energy efficiency 

measures [2], not studying the possibility to adopt a 

prosumer behaviour. In order to support industrial entities 

in the inclusion of renewable energy sources to behave as 

prosumers, the required energy investment and equipment 

operation problem for them should be addressed. The 

energy equipment design and operation optimization 

problems analysed in the literature until now focus on 

microgrids, buildings or energy hubs to supply energy to 

the tertiary demand. Those studies do not reflect the 

investment reality in the industrial sector due to two main 

reasons: uncertainty is not considered or time evolution is 

omitted. 

 

Most of the research done up to date do not consider the 

uncertainty in the input parameters [3]. This approach 

leads to solutions that, translated into the real world with 

uncertain and non-deterministic parameters, may present 

an outcome different from the one obtained theoretically. 

This output uncertainty represents a risk for investors 

which has to be analysed. There is, in fact, a stream of 

research that evaluates the uncertainty in energy-related 

problems. In [4], the effect of the uncertainty in inputs 

parameter on the cost of energy is analysed for a hybrid 

renewable energy system. Similarly, in [5], the system 

behaviour uncertainty is studied, and in [6], the impact in 

the design parameters on the energy performance of a 

building is analysed. However, none of these works 

considers the evolution of parameters over time, and they 

do not evaluate the economic suitability of the energy 

infrastructures designed. In order to enhance industrial 

actors to take energy investment decisions, it is essential 

to study the whole expected lifetime of the energy 

infrastructure and analyse the uncertainty in its economic 

performance. 

 

Based on the above explanation, in this paper, the 

uncertainty is studied for an industrial enterprise aiming 

to invest in energy equipment including renewable 

energy sources to act as a prosumer. To do so, the 

following analysis, as exposed in Fig. 1, is performed: 
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Fig. 1: Proposed methodology to assess the uncertainty in energy investment decisions 

 

1) Design and operation optimization of the energy 

equipment to be installed in an industrial 

enterprise with prosumer behaviour considering 

deterministic parameters along the expected 

lifetime of the equipment. 

2) Uncertainty characterization of the relevant input 

parameters. 

3) Uncertainty Analysis (UA) of the energy 

investment Net Present Value (NPV) to quantify 

the risk related to the investment decision. 

 

This paper is structured as follows. Firstly, the 

methodology applied to perform the optimization of the 

investment is presented in section 2 together with the 

uncertain inputs’ characterization and the UA strategy. 

Then, in section 3, this methodology is applied to a case 

study reflecting the real industrial situation. The results of 

this case study and their discussion are exposed in section 

4 and, lastly, the conclusions of the study are presented in 

section 5. 

 

2. Methodology 

 
In this section, the methodology proposed to properly 

optimize the energy equipment and its operation 

considering the whole lifetime framework and assess the 

relevant uncertainties linked to its performance is exposed. 

The general workflow for the approach presented is shown 

in Fig. 1. First of all, the optimization of the energy 

infrastructure is performed considering the input 

parameters as deterministic along the expected lifetime of 

the equipment, which is taken to be 15 years. Then, the 

uncertain inputs are identified and their probability 

distributions characterized to be able to evaluate their 

influence on the output. Finally, the uncertainty in the 

economic performance of the decision is studied through a 

UA. 

 

A. Optimization of the energy equipment 

 

Considering industrial enterprises interest, the optimization 

of the energy equipment aims to maximize the final 

economic value of the energy infrastructure to install. In 

order to do so, a two-stage optimization approach is 

presented to maximize the NPV of the investment. The 

two-stage optimization strategy enables to obtain the 

design parameters in the first stage, formed by the 

equipment to install and their sizes while considering 

their operation in the second-stage. The flowchart of the 

approach can be seen in Fig. 2. 

 

First of all, information is gathered and the data required 

to perform the optimization along the lifetime of the 

equipment is computed. To capture the yearly behaviour 

of the plant along its lifetime with a feasible 

computational expense, a set of typical days are 

employed. According to [7,8], these days have to be 

distributed per season to correctly represent the different 

types of demands that occur along the year, being 

suitable the use of one day per season or one day per 

month. However, the industrial sector and the electricity 

market also present significative energy differences 

between week-days and weekend-days, requiring their 

consideration for the selection of typical days. Thus, for 

the problem under study, each of the years is analysed 

through 12 characteristic days, three per season, being 

two of them week-days and the other a weekend-day. 

 

In order to obtain the NPV of the investment, it is 

required to obtain its benefits compared to a baseline 

scenario. For this reason, a linear optimization of the 

baseline of the enterprise, with the current existent 

energy infrastructure, is performed. Then, the first stage 

of the optimization is initialized. For the problem under 

study here, the Direct Search (DS) optimizer is employed 

due to its capability to globally search the optimal value 

in an efficient manner for a limited set of variables with 

clearly defined boundaries. DS selects a set of candidates, 

which are evaluated in the second stage and their NPV 

computed. In the second stage, the operation of the 

energy infrastructure selected as candidates is evaluated 

for the whole lifetime through a Linear Programming 

(LP) approach, assuring the achievement of minimal 

costs. The restrictions regarding emissions and payback 

are verified and, if accomplished, the NPV of the 

investment is computed comparing the operation of the 

upgraded plant with that of the baseline. This procedure 

is repeated until the first-stage optimizer reaches an 

optimal value. 
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Fig. 2: Flowchart for the energy design optimization 

 

B. Uncertainty characterization 

 

The energy infrastructure of the industry as a prosumer has 

a performance linked to the costs of the energy carriers. As 

the energy transition will affect the energy markets and the 

cost of energy is forecasted to grow continuously in 

upcoming years, although at different rates depending on 

the forecasting approach adopted [9], it is essential to 

study how this evolution and its uncertainty affect the 

result of the investment performed by the industry. 

These uncertain parameters are considered by assigning a 

Probability Distribution Function (PDF) to each of them, 

which enables the application of methods that consider the 

probability of the occurrence of scenarios and provides 

robust results [10]. According to [9,11,12], the cost of 

electricity is forecasted to increase between 25% and 

110% by 2035; while the cost of gas is forecasted to 

increase between 11% and 33% [9,13]. These yearly 

percentage values are transformed into PDF fitting 

possible distribution functions and selecting the most 

suitable ones as evaluated by the likelihood function. The 

resultant distributions functions are exposed in Table I. 

 
Table I: PDF of the studied uncertain inputs 

 
Uncertain parameter PDF 

Electricity price yearly percentage 

increase 

Nakagami (µ=0.885; 

ω=10.14) 

Gas price yearly percentage 

increase 

Weibull  

(λ=1.44; k=3,11) 

 

 

 

C. Uncertainty Analysis 

 

Once the optimal design and operation of the plant is 

obtained and the uncertainty in the inputs is 

characterized, it is possible to perform a UA to evaluate 

the uncertainty in the output of the system which, in this 

case, is the NPV of the investment. 

 

A UA method that considers the PDFs of inputs to obtain 

the distribution in the output through sampling and 

repeatedly evaluating the deterministic model is a 

suitable strategy that provides robust results [14]. In this 

case, and given the complexity of the system, a quasi-

random sampling strategy is selected. This type of 

strategy improves the performance of commonly used 

techniques such as Monte Carlo [15], which requires a 

high computational effort. In this paper, the Latin 

Hypercube Sampling (LHS) technique is used [16]. LHS 

is a probabilistic technique that obtains samples by 

dividing the PDF into N intervals with equal probability 

and choosing randomly one sample per interval. 

Combining randomly the different samples, N scenarios 

are generated which are used to run N times the 

deterministic model, enabling to capture the uncertainty 

in the output. 

 

3. Case study 

 
A case study is developed based on a real manufacturing 

industrial plant with total electrical and thermal 

consumptions of 679,240 MWh and 1,127,600 MWh, 

respectively. The initial infrastructure of the plant 

consists of a boiler to transform natural gas into thermal 

energy, while the electrical demand is directly met with 

energy purchased at the utility grid. The enterprise is 

considering the possibility to install a PV system as well 

as cogeneration and energy storages. To account for the 

deterioration of the PV system along its expected 

lifetime, an efficiency loss of 0.8% per year has been 

considered [17]. The capital cost and the levelized cost of 

energy (LCOE) including operation and maintenance 

costs employed in the optimization process for each of 

the evaluated technologies can be seen in Table II. 

 
Table II: Cost of energy equipment 

 
Equipment Capital cost LCOE 

PV system 950 €/kW 0.07 €/kWh 

CHP 3,400 €/kWe 0.042 €/kWh 

Electrochemical energy storage 430 €/kWh 0.06 €/kWh 

 

The constraints considered by the studied enterprise 

regarding the investment and its performance are exposed 

in Table III. 

 
Table III: Applicable constraints for the case study 

 
Constraint Value for the case 

study 

Maximum investment 1,000,000€ 

Maximum area for the installation of 

PV 

12,000m2 
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4. Results and discussion 

 
A. Deterministic optimization 

 

The optimal energy infrastructure to install is exposed in 

Table IV. The PV system is chosen to cover all the 

available space and the cogeneration is sized to optimally 

fulfil demand and interact with the utility grid obtaining 

the maximum profit. It can be seen that although there was 

the possibility to include energy storage, this has not been 

selected due to its high cost compared with the possible 

revenue obtained by trading its energy with the utility grid. 

The decision to upgrade the energy infrastructure with this 

equipment supposes an investment of 913,630€ with a 

payback period of 5 years and an NPV at the end of the 

lifetime of the equipment of 6,788,400 €. 

 
Table IV: Optimal energy equipment to install in the industrial 

case study 

 
Energy equipment selected Size 

PA Area 12,000m2 

Cogeneration 200We 

 

The prosumer behaviour of the plant for a typical autumn 

week-day and a typical autumn weekend-day can be seen 

in Fig. 3 and Fig. 4, where the energy exchange with the 

utility grid is exposed in front of the energy cost at the 

wholesale market and the internal electrical demand. It is 

possible to see that, due to the existence of a renewable 

energy source, surplus energy can be injected into the 

utility grid when the cost is high while still fulfilling 

internal demand. Also, and due to the difference in costs 

between the electrical and gas energy carriers, the 

inclusion of a cogeneration system is favourable to support 

fulfilling electrical demand and thus not purchasing it 

directly from the electrical grid at high costs. 

 
Fig. 3: Prosumer energy exchange for an autumn weekday 

 

 
Fig. 4: Prosumer energy exchange for an autumn weekend 

 

B. Uncertainty Analysis 

 

Once the deterministic behaviour is obtained, in this 

section the results for the UA are exposed to evaluate the 

risk of performing the energy investment and the optimal 

operation selected in the previous stage. To perform the 

UA, the PDFs of the electricity and gas costs are sampled 

for each of the years to obtain realistic time evolution 

scenarios. A total number of 1000 is generated, which is 

a suitable value to obtain an accurate and representative 

result [6]. These samples are then randomly combined 

between them, creating the scenarios analysed, which are 

employed to repeatedly run the deterministic plant model, 

obtaining the final NPV distribution, which is exposed in 

Fig. 5. 

 

 
Fig. 5: Probability distribution of the NPV according to inputs' 

uncertainties 

 

In this figure, it is possible to appreciate the repeatability 

of the obtained NPV as well as the PDF that best fits the 

data, which in this case is an Inverse Gaussian with 

parameters (µ=6.792; λ=16,324). The standard deviation 

of the NPV is 138,500 €, which means that it is probable 

to have a final NPV 138,500 € lower or higher than the 

obtained in a deterministic manner due to the 

uncertainties in the energy markets. Although the 

standard deviation is by itself a considerable amount, the 

final deterministic NPV is 6,788,400 €, meaning that this 

value can vary due to the uncertainty present in the 

energy markets a 2%. 
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These results clarify the impact of energy market 

uncertainties in energy investment. With the obtained 

values in this case study, it is shown that despite the 

expected variations in the cost of energy carriers, the 

economic value for energy infrastructures adopting a 

prosumer behaviour is robust and the risk can be 

acceptable by enterprises. 

 

5. Conclusions 

 
The economic benefits of including renewable energy 

sources and new transformer equipment to adopt prosumer 

behaviour have been analysed in this paper. A workflow to 

study the energy investment characteristics and their 

uncertainties has been presented, including the optimal 

design and operation, the characterization of uncertainties 

of energy carrier prices, and the Uncertainty Analysis, 

performed through repeatedly evaluating the model under 

the uncertain scenarios obtained through Latin Hypercube 

Sampling. This methodology has been applied to a case 

study that represents a typical industry with electrical and 

thermal demand and the capability to install a PV system 

and transformer and storage equipment. For this case 

study, it is optimal to install the PV system in all the 

available space and incorporate a cogeneration system to 

link the electrical and thermal sides of the industry. The 

Net Present Value (NPV) of the investment multiplies by 

more than 7 the initial investment required and the 

payback period is of 5 years, making energy infrastructure 

upgrading an interesting option for industrial enterprises. 

This energy investment decision has been analysed under 

the uncertainty present in the energy markets, represented 

by the increase in the cost of energy carriers. With current 

uncertain values, the expectable NPV of the investment 

varies 2 % concerning its deterministic value, showing the 

robustness of the optimization procedure. These results are 

of high utility for the industrial sector, enhancing them to 

perform energy actions and providing a framework for 

industrial enterprises to evaluate their energy investment 

decisions. 
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