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Abstract. This paper describes an alternative mathematical 

model for simulation of a symmetrical induction machine in the 

abc-reference frame. It has been mathematically proven that the 

inverted matrix can be computed without the need of matrix 

inversion. Instead the elements in main diagonal of the inverted 

matrix are precomputed and the elements of the secondary matrix 

are calculated only as a function of the rotor angle. The 

performance of the model has been verified by comparison with 

the conventional model which uses matrix inversion. The 

comparison has been done by observing the induction machine 

variables during free (no-load) acceleration and showed no 

differences in the results between the two models. The 

comparison has also shown that model proposed in this paper 

needs less computational effort. 
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1. Introduction 

 
In an electrical machine the stator and rotor winding are 

mutually coupled and when the rotor changes its position 

the mutual induction also changes i.e. it is dependent on 

the rotor position. This fact made the analysis of the 

electrical machines more difficult. In order to overcome 

this problem R.H. Park has introduced a new approach for 

the analysis of electric machines, which eliminates all 

rotor position-dependent inductances [1]. This approach is 

known in the literature as the Park’s or the dq0 

transformation. Due to its advantages, the dq0 

transformation, or the dq0 model of an electrical machine, 

is the favorable choice when it comes to simulation of 

electric machines.  

There are, however, cases where the modeling of the 

electrical machine in the abc-reference frame is more 

advantageous even though it requires more computational 

effort. Such case is, for example, the modeling and 

analysis of space harmonics. It has been shown in [2] that 

the abc-reference frame model is in some cases the only 

possible way for simulating certain space harmonics.  

The purpose of this paper is to describe the solving of the 

machine equations using matrix partitioning and to provide 

a faster way for the simulation of symmetrical induction 

machines in the abc-reference frame. This is achieved by 

eliminating the need for inversion of the inductance 

matrix. Instead, a mathematical model is developed 

which pre-calculates the elements of the main diagonal of 

the inverted matrix and the elements of the secondary 

diagonal are merely a function of the rotor angle 
r

θ . 

The developed model will be verified by comparison 

with the conventional method which uses matrix 

inversion. 

 

2. Mathematical model of the induction 

machine in abc-reference frame 

 

The general model of the induction machine is given by 

the following differential equations for the stator and 

rotor voltages [3]: 

 

      
      

      

abcs abcs abcss

abcr abcr abcrr

rv i λ

v i λr 0 d
= +

v' i' λ'0 r' dt
1424314243 123 14243

 
(1)

The matrices of the stator and rotor resistances are 

defined as: 
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The flux linkages for the stator and rotor winding can be 

expressed in the following matrix form: 

  
     
     
     

abcs ss sr r abcs

abcr rs r rr abcr

λ L L' (θ ) i
=

λ' L' (θ ) L' i'
 (3) 

And finally the matrices for the winding inductances are 

defined as:  
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2 2

1 1
2 2

1 1
2 2

ls ms ms ms

ms ls ms ms

ms ms ls ms

L L L L

L L L L

L L L L

 + − −
 

= − + − 
 

− − +  

ssL  (4) 

https://doi.org/10.24084/repqj14.231 79 RE&PQJ, No.14, May 2016



 

 

 

 

 

 

 

 

 

 

  

1 1
2 2

1 1
2 2

1 1
2 2

'

'

'

lr mr mr mr

mr lr mr mr

mr mr lr mr

L L L L

L L L L

L L L L

 + − −
 

= − + − 
 

− − +  

rrL'  (5) 

 

2 2

3 3

2 2

3 3

2 2

3 3

cos( ) cos( ) cos( )

cos( ) cos( ) cos( )

cos( ) cos( ) cos( )

r r r

ms r r r

r r r

L

π π

π π

π π

θ θ θ

θ θ θ

θ θ θ

+ − 
 

= − + 
 + − 

srL'  (6) 

 

2 2

3 3

2 2

3 3

2 2

3 3

cos( ) cos( ) cos( )

cos( ) cos( ) cos( )

cos( ) cos( ) cos( )

r r r

ms r r r

r r r

L

π π

π π

π π

θ θ θ

θ θ θ

θ θ θ

− + 
 

= + − 
 − + 

rsL'  (7) 

where 
r

θ  is the rotor angle, 
ls

L  is the stator winding 

leakage inductance per phase, '
lr

L  is the rotor winding 

leakage inductance per phase, 
ms

L  is the self-inductance of 

the stator winding, 
mr

L  is the self-inductance of the rotor 

winding and the superscript '  denotes variables and 

parameters referred to the stator. 

 

The electromagnetic torque 
em

T  is given by the following 

relation in Newton·meters (N·m): 

 ( ) [ ]
2

T

em

r

p d
T

dθ

 
=  
 

abcs sr abcr
i L' i'   (8) 

and the relation between the rotor speed and the torque is 

 
2

em Lr
T Td p

dt J

ω − 
=  
 

  (9) 

Where J  is the inertia of the rotor in kilogram·meter
2
 

(kg·m
2
), 

L
T  is the load torque and p  number of poles.  

The rotor speed is the derivative of the rotor angle with 

respect to time so we can rewrite the equation above in the 

following manner: 

 
2

2

em Lr
T Td

Jdt

θ −
=   (10)

The terminals of the stator windings of are connected to an 

external voltage source and the terminals of the rotor 

windings are either short circuited (squirrel-cage) or can 

also be connected to an external voltage source. In any 

case, the voltage vector is known so it makes sense to 

rearrange (1) and combine it with (3) in the following 

manner: 

 ( ) dt∫
-1

n n r n n -1i = L (θ ) × v - r × i  (11)

where the subscript ‘n’ denotes values from the current 

timestep and ‘n-1’ from the previous. In order to simulate 

the symmetrical three-phase induction machine the initial 

values for the current vector i  and the rotor angle 
r

θ  

must be calculated i.e. set to zero in case of a free 

acceleration. The simulation process is as follows. The 

difference between the voltage vector and the voltage 

drop due to the resistance is integrated and multiplied 

with the inverted induction matrix. It must be mentioned 

here that the induction matrix L is a function of the rotor 

angle 
r

θ  and it must be inverted each timestep. The 

obtained values for the current vector i  are fed into (8) 

so the electromagnetic torque 
em

T  could be calculated. 

Finally, the rotor angle 
r

θ  is calculated according to (10). 

The entire simulation process of a symmetrical induction 

machine in the abc-reference frame is depicted in Fig. 1. 

 

3. Proposed model  

 
The inductance matrix L  from (3) is a nonsingular 

square matrix: 

  
 
 
 

ss sr r

r

rs r rr

L L' (θ )
L(θ ) =

L' (θ ) L'
 (12) 

Let its inverse matrix 
-1

block
L  be defined as: 

 
 
 
 

-1

block

E F
L =

G H
 (13) 

In order to differentiate the inverted matrix obtained 

using matrix partitioning the subscript ‘block’ is used. 

Since 
ss

L , 
sr

L' , 
rs

L' and 
rr

L'  have the sizes 3x3, than 

the sizes of E , F , G  and H  must also be 3x3 [4]. 

Having a closer look of (4), (5), (6) and (7) it can be 

concluded that 
ss

L  and '
sr

L  are symmetrical matrices (

T

ss ssL = (L )  and T

sr srL' = (L' ) ) and that T

rs srL' = (L' ) .  

Assuming that 
ss

L and 
rr

L'  are nonsingular and  

  ( ) ( )
T -1

rr sr ss srS = L' - L' L L'  (14)

  ( ) ( )
-1 T

ss sr rr srT = L - L' L' L'  (15)

 

 

 

Fig. 1: Simulation of a symmetrical 3-phase induction machine in the abc-reference frame shown in block diagram form 
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Then according to [5], if the indicated inverses exist, the 

following expressions are equal to 
-1

block
L : 

  
( )

( )

 
 
  

T-1 -1 -1 -1 -1 -1

ss ss sr sr ss ss sr

T-1 -1 -1

sr ss

L + L L' S L' L -L L' S

S L' L S
 (16) 

 
( )

( ) ( ) ( ) ( )

 
 
  

-1-1 -1

sr rr

-1 -1 -1 -1-1 -1

rr rs rr rr rs sr rr

T -T L' L'

- L' L' T L' + L' L' T L' L'

 (17) 

In the equations above the matrices of the mutual 

inductances 
rs

L'  and 
sr

L'  are functions of the rotor angle 

r
θ , however, if (14) and (15) are closely inspected, it can 

be seen that their values are constant and not dependent on 

the rotor angle. This is due to the fact that all submatrices 

of L  share the same eigensystem i.e. they commute [6], so 

S  and T  could be rearranged in the following manner: 

  ( ) ( )
T -1

rr sr sr ssS = L' - L' L' L  (18)

  ( ) ( )
T -1

ss sr sr rrT = L - L' L' L'  (19)

Due to the nature of the mutual induction matrices it could 

easily be proven that the product ( )
T

sr srL' L'  is always 

constant and therefore the values of S  and T  are also 

constant. 

Since both (16) and (17) are equal to -1L  we can combine 

them in the following manner: 

 
( )

 
=  

−  

-1 -1 -1

ss sr r-1

block r T-1 -1 -1

sr r ss

T -L L' (θ )S
L (θ )

S L' (θ ) L S
 (20)

Now, it is easily seen that the submatrices in the main 

diagonal are always constant and that only the submatrices 

in the secondary diagonal should be calculated each 

timestep. In order to reduce the computation effort even 

further one could take advantage of the fact that the self-

inductance matrices 
ss

L  and 
rr

L'  are symmetric i.e. equal 

to their transpose. That yields in the fact that the upper 

right part of  
-1

block
L  is equal to the lower left part. Finally, 

the expression for the inverted induction matrix looks as 

follows: 

  ( )

const

 
 
  

=

-1

sr r-1

block r T -1

sr r

-1 -1

ss

T -UL' (θ )
L (θ ) =

-UL' (θ ) S

U = L S

 (21)

In this manner, the inversion of the 6x6 matrix reduces to 

multiplication of two 3x3 matrices and transposing their 

product which considerably lowers the computation 

effort. The modified simulation process is depicted in 

Fig. 2 where the changes with regard to Fig. 1 are marked 

in red.  

The difference is, of course, the fact that no longer matrix 

inversion per se is needed. Instead, the inverted induction 

matrix is now only a function of the rotor angle 
r

θ . 

 

4. Model Verification 

 
The mathematical model of the symmetrical 3-phase 

induction machine, as described in the previous chapter 

and depicted in Fig. 2, was implemented in MATLAB as 

a script, but this can also be done in practically any 

programming language. In order to verify its behavior it 

has been compared against the model depicted in Fig. 1 

which has also been implemented as a MATLAB script. 

In order to compare the two models, the variables of the 

both induction machine models during free (no-load) 

acceleration were observed. The parameters of the 

machine are from [7] and given in Table I. 

 
Table I Induction Motor Parameters 

Rated power 
n

S  1.5 MW 

Rated line voltage 
n

U  690 V (L-L, rms) 

Rated frequency 
s

f  50 Hz 

Phases 3 

Number of poles p  6 

Moment of Inertia J  70 kg·m
2 

Stator resistance 
s

R   0.002 Ω  

Rotor resistance 
r

R  0.0015 Ω  

Stator inductance 
ls

L  1.5915e-04 H 

Rotor inductance 
lr

L  1.4961e-04 H 

Mutual inductance 
m

L  0.0018 H 

 

Fig. 3 shows the free acceleration characteristic of the 

induction machine from a stationary state to its steady 

state. From the figure the transient behavior of the stator 

current in the phase A, the transient behavior of the rotor 

current in the phase A, the electromagnetic torque, the 

rotor speed and the torque-speed characteristic of the 

induction can be observed.  

After 9 seconds of the simulation time the steady-state 

operation is reached. In steady-state operation the 

amplitude of the stator current reaches 619.2 A, the 

amplitude of the rotor current is almost equal to 0A and  
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Fig. 2: The modified simulation process of a symmetrical 3-phase induction machine in the abc-reference frame 
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Fig. 3 The free acceleration characteristic 

dt⋅∫λ = (v - r i)

-1i = L ×λ
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2
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r

p d
T

dθ

 
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abcs sr abcr
i L' i'

2

2

em Lr
T Td

Jdt

θ −
=

-1
block

i = L ×λ

 
Fig. 4: The performance measurement process 

 

since the motor is working without load the slip is close to 

zero i.e. the frequency of the rotor is practically 0 Hz. 

This is due to the fact that 
r s

f s f= ⋅ , where 
r

f  and 
s

f  are 

the rotor and stator frequencies respectively and s  is the 

rotor slip. 

The rotor speed of the unloaded induction machine is 

given by 120 /
s

n f p= ⋅  and is equal to 1000 rpm, which 

corresponds to the simulation results shown in Fig. 3-d. 

The free acceleration characteristic shown in Fig. 3 is 

absolutely identical for the both implementations of the 

induction machine i.e. the implementation which inverts 

the induction matrix of the machine and the 

implementation according to the proposed model from 

Chapter 3 in this paper. 

The only difference between the two implementations can 

be seen in the computation effort needed for their 

simulation. The results are presented in the following 

chapter. 

 

5. Simulation performance 

 
As already mentioned the computational effort needed for 

the proposed model is considerably lower than the 

conventional method which relies on matrix inversion. In 

order to compare the performances of both models their 

execution times were measured. The whole performance 

measurement process is depicted in the flowchart shown 

in Fig. 4. The performance is measured by the two timers 

which are implemented in the simulation. In the 

simulation, if the variable block is set to 1, then the 

proposed method for matrix inversion is used. The first 

timer tSim, which is marked in red in the figure, is 

measuring the whole simulation time from the beginning 

to the end. The second timer tL, which is marked in green 

in the figure, measures only the time needed for the 

calculation of the inverted induction matrix. 

The whole process shown in Fig. 4 is also implemented 

as a MATLAB script and the timers tSim and tL are using 

the built functions for time measurement tic and toc. The 

keyword tic starts the timer [8], whereas the keyword toc 

returns the elapsed time [9].  

The results of the performance measurement are 

summarized in Table II.  

 
Table II Execution times of tSim and tL 

block=0 block=1 Difference [%] 

tSim [s] 12.1013 9.3191 22.9907 

tL [s] 3.9654 2.4048 39.3557 

 

From the table it can be seen that the inversion of the 

inductance matrix using the proposed model (block=1) is 

almost 40% faster than the inversion using the 
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conventional method (block=0). For the conventional 

method the MATLAB built-in function inv() was used, 

which forms the explicit inverse of a matrix. The same test 

was also performed using the mldivide() function, which 

produces solution using Gaussian elimination [10], but 

there were no significant performance improvements in 

comparison to the inv() function. 

The total simulation time, measured by tSim, is not as 

decisive as tL since it also depends on the total extent of 

the simulation. However, for the current case shown on 

Fig. 4, an improvement of almost 23% can be seen.  

 

6. Conclusion 

 
In this paper an alternative mathematical model in the abc-

reference frame for the simulation of a symmetrical 

induction machine was developed. This mathematical 

model takes advantage of the matrix inversion of 

partitioned matrices. The developed model was 

implemented in the MATLAB and compared against the 

conventional one. The comparison, which was done by 

observing the variables of the both models during free (no-

load) acceleration, verified that there was no difference 

between the conventional and the proposed method. 

The performance analysis revealed that there is a 

significant reduction in the execution times in favor of the 

proposed model.  

The developed model is only valid for symmetrical 

induction machines.  

The model could be used as a faster alternative to the 

conventional abc-reference frame method. Another 

possible application could be the faster and more intuitive 

simulation of the slot harmonics in the induction machines.  
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