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Abstract. This research demonstrates the potential contribution 

of synchronverters with virtual friction to the damping of inter-

area oscillations and the enhancement of the transient stability of 
a power system. Virtual friction creates additional torque acting 
on the virtual rotor of the synchronverter, which is equivalent to 
viscous friction being present between this synchronverter and the 
virtual rotor of another (usually remote) synchronverter or bus 
bar. This function is realized by creating communication lines 
between synchronverters in different areas of a power system and 
expanding the synchronverter algorithm. Our study is based on 

simulations in PSS/E for an IEEE benchmark two-area network. 

Key Words. synchronverter, inter-area oscillation, local mode, 

virtual friction, droop coefficient, power system stabilizer.  

1.    Introduction 

    Synchronous generators (SG) have the following useful 

property: once synchronized, they stay synchronized even 

without any control, unless strong disturbances destroy the 

synchronism [18]. This is one of the features that have 

enabled the development of the AC electricity grid at the 

end of the XIX-th century, and has led to the emergence of 

trusted control algorithms for ensuring a stable grid [13], 

[16], [9], [19], [11]. However, this situation is changing 

today due to the penetration of inverter-based power 
sources (mostly from renewables) into the grid [2], [4], 

[24], motivating many researchers to take a fresh look at 

grid stability using a variety of models, such as [7], [20]. 

The non-SG power sources threaten the stability of the 

power grid for various reasons, including their lack of 

inertia. Synchronverters have been introduced precisely to 

rectify this destabilizing effect of inertia-less inverters 

working under a variety of control algorithms. A synchron-

verter is an inverter controlled to emulate the behavior of a 

synchronous generator, see [27], [25], [26], [14]. The 

related concept of virtual synchronous generator was 
introduced earlier in [8]. Using a modest energy storage 

device in place of inertia, a synchronverter can emulate the 

inertial response typical of synchronous generators. It also 

includes a fast frequency drooping mechanism that can 

regulate its active output power in proportion to the 
deviation of the grid’s frequency from a reference value. 

    The frequency droop in a synchronverter is akin to a fast 

acting speed governor system. It contributes to the stability 

in the power system by rapidly restoring the equilibrium 

between electromagnetic torque and mechanical torque 

following sudden changes in generation or load. It has been 

noticed ([5], [15], [27]) that synchronverters have addi-

tional benefits, that make them actually “better” than SGs: 

the ability to change their inertia (and other parameters) in 

real time, and the ability to provide practically instant-

neous frequency and voltage droop, while SGs and their 
prime movers may have huge time constants associated to 

their droop control loops (the inherent time constant of a 

modern static excitation system may be very small).    

    Electromechanical oscillations are an inherent 

phenomenon in power systems. They are usually due to 

small disturbances that take place frequently as a result of 

small variations in loads and generation [13]. Such oscilla-

tions contain multiple frequency components which are 

determined by generator inertia, transmission line induc-

tance, speed governor control, generator excitation control 

and loads. The natural frequencies of the oscillations that 

are of main concern in a power system may be classified 
into two different modes: local and inter-area modes.  

    Local modes are associated with a single gene-rating 

plant or a small group of generators oscillating against the 

rest of the power system. The natural frequency of local 

mode oscillation is generally in the range of 1 to 2 Hz [16], 

[18]. Power system stabilizers (PSS) were originally 

introduced to damp this type of oscillations. A PSS adds a 

stabilizing damping torque to the generator’s rotor by 
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adding a control signal to the field voltage produced by the 

generator’s automatic voltage regulator (AVR). 

    Disturbances within coherent groups of generators 

interconnected through weak transmission lines (i.e. high 

reactance) may give rise to poorly damped inter-area 

oscillations. The natural frequency of inter-area 
oscillations is typically lower than that of local modes (less 

than 1 Hz). The damping characteristic of the inter-area 

mode is dictated by the tie-line strength, the nature of the 

loads, the power flow through the interconnection and the 

interaction of loads with the dynamics of generators and 

their associated controls. Power system stabilizers may 

also be designed with emphasis on damping inter-area 

oscillations [12]. The stability of weakly interconnected 

systems may be enhanced through other means, such as 

thyristor controlled series capacitors (TCSC) connected 

along the tie-line [21] or shunt connected static Var 

compensators (SVC) [10] among others. 

    Another problem of concern to power utilities is that of 

transient stability. This refers to the ability of synchronous 

machines of an interconnected power system to remain in 

synchronism after being subjected to a major disturbance 

[13]. The most severe disturbance is a solid three-phase 

symmetric short circuit in a transmission line followed by 

its inevitable disconnection by protective fault clearing de-

vices. Although such faults are rare, a network must be 

designed and operated to withstand such events regardless 

of their frequency. The transient stability of a power sys-

tem depends on the ability to restore the equilibrium 

between electromagnetic and mechanical torque of each 

SG after the disturbance. A fundamental factor in this 
problem is the manner in which the power outputs of SGs 

vary as their relative rotor angles change. The system 

response to large disturbances may involve extreme 

excursions of generator rotor angles. Instability may ensue 

as a result of increasing angular divergence of some 

generators leading to their loss of synchronism. 

    The virtual friction function in a synchronverter is 

designed to add a damping component to the inverter’s 

output power in proportion to the difference between the 

frequencies of two separate coherent groups of generators 

interconnected through a relatively long tie-line. It creates 

additional torque acting on the virtual rotor of the 
synchronverter, which is equivalent to viscous friction 

being present between this synchronverter and the virtual 
rotor of another (usually remote) synchronverter. The 

virtual friction can also act to emulate viscous friction 
against the rotor of a real SG (the friction torque will act 

only on the synchronverter rotor). This function has a 

stabilizing effect on inter-area oscillations in addition to 

 

 

Fig. 1. Simulation model of the improved synchronverter (the electronic part) following [15], with the virtual friction also included. The 
virtual inductor from [15] is not shown, but it is part of the block of equations giving the average voltages g (a 3 dimensional vector) 
produced by the switches in the 3 inverter legs. For the details about the integrator with anti-windup and the blocks near it we refer to [15]. 
The decomposition of the active torque into high and low-pass branches, with a saturation, is explained in [22]. 
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the frequency drooping mechanism. Virtual friction was 

introduced in [5], [6]. A mathematical investigation for the 

simplest possible case (two identical generators and a load) 

is contained in [23]. It uses earlier results about the 

stability of a SG connected to an infinite bus [14]. The aim 

of this paper is to investigate the effects of virtual friction 
on some realistic grid models. 

2. The model used in the simulations 

   The two-area system that was selected for this study is 

based on an artificial two-area four generator IEEE test 

benchmark [17]. This benchmark system is itself based on 

a model created for a research report commissioned from 

Ontario Hydro by the Canadian Electrical Association to 

study the different types of oscillations that occur in 

interconnected power systems [18].  

    After skipping many details, we show in Figure 1 our 

model of a synchronverter, based on [5], [15], [22], [27]. 

For the details of the block diagram (algorithm) and how it 
is motivated by the structure of a SG, we refer to [5], [15], 

[27]. We have not shown the blocks needed for self-

synchronization (the start-up process), see [26]. The virtual 

inductor and virtual capacitor in each phase (see Figure 2) 

are motivated and explained in [15]. The synchronous 

internal voltage 𝑒𝑞  together 𝑒𝑑 = 0 is transformed by the 

inverse Park transformation into 𝑒 = (𝑒𝑎 , 𝑒𝑏 , 𝑒𝑐) and from 

here the algorithm computes 𝑔 = (𝑔𝑎, 𝑔𝑏 , 𝑔𝑐) by the 

simple formula 𝑔 =
1

𝑛
((𝑛 − 1)𝑣 + 𝑒) , where v is the local 

grid voltage, see [15]. These signals g are provided as the 

desired average voltages to the PWM generator. OK  

    We say a few words about the output circuit of a 

synchronverter, since this is important for our  simulations. 

The literature proposes different LC (or LCL) filter design 

guidelines for grid connected inverters [1], [3], [4], [20], 

[25]. The differences in guidelines seem to be a result of 

differences in the proposed inverter topologies, treatment 

of the neutral point, modulation methods (PWM, SPWM or 

SVM) and plant configurations. We extract the following 

general guidelines: 

1. The inverter-side inductance is determined by the 

maximum allowable current ripple at the output of the 

inverter in relation to the rated current of the inverter. 

2. The filter capacitance should be selected so that the 
resonant frequency of the filter lies between the nominal 

grid frequency and the switching frequency of the inverter. 

It is also recommended that the capacitance be a fraction of 

the base capacitance at rated conditions [3]. 

    Figure 2 shows a single phase diagram of the 3 phase 

inverter with virtual components in series (capacitor and 

inductor) connected to the utility grid through an LC filter, 

an LV/MV isolation transformer and an MV/HV station 

step-up transformer. The figure also shows the presumed 

PCC at the high voltage side of the station transformer. 

The nominal grid voltage at the output of the LC filter is 

690 Volts or 398.4 Volts phase to neutral (rms). 

    Figure 3 is a simplified representation of a two-area 

power system with one synchronverter in each area. Each 

of the two areas in the figure has also two synchronous 

generators connected to an interconnecting tie-line through 

intermediate bus bars. Each synchronverter is represented 

by an inverter, a virtual inductance and the inductance of 

the LC filter. The virtual friction function is incorporated 

into both synchronverters by modifying the equations of 
rotational motion of the virtual rotors as follows: 

   1
1 1 1 1 1 1 2m e p r pv

d
J T T D D

dt


         ,

   2
2 2 2 2 2 2 1m e p r pv

d
J T T D D

dt


         , 

where 1  and 2  are the angular velocities of the virtual 

rotors of synchronverters S1 and S2, 𝐷𝑝1 > 0 and 𝐷𝑝2 > 0 

are their corresponding frequency droop constants and

 

 

Fig. 2. Single phase diagram of a 3-phase inverter with virtual components connected to the utility grid
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𝐷𝑝𝑣 > 0 is the virtual friction coefficient (we took the 

same value in both synchronverters, but they may also 

differ). In our equations, 𝐽𝑘 are the moments of inertia, 𝑇𝑚𝑘  

are the virtual active torques and  𝑇𝑒𝑘 are the virtual 

electric torques (k = 1 or 2). 

 

3. Simulation results 

    We performed a series of time domain simulations to 
demonstrate the potential impact that synchronverters with 

virtual friction could have on the mitigation of inter-area 

oscillations and the enhancement of transient stability in a 

two-area power system. The simulations were performed 

using the Siemens-PTI PSS/E (power systems simulator 

for engineers) software package. Since its introduction in 

1976, PSS/E has become one of the most widely used 

commercial programs for the study of power systems 

dynamics. For this study a dynamic simulation model of 

the synchronverter was integrated into the PSS/E software 

as a synchronous generator User Model. To obtain our first 

test system, the 4 generator system in the IEEE benchmark 
[17] was modified to accommodate two additional SGs, 

becoming a two-area 6 generator system. In the second 

test system, two of the generators (marked as G5 and G6 

in Figure 3) have been replaced with two identical 

synchronverters (marked as S5 and S6 in Figure 3) of the 

same MVA rating with a nominal power factor of 0.9 and 

step-up transformers with approximately the same 

equivalent short circuit impedance, which in the case under 

consideration has a value of 0.17 per unit. The virtual 

friction function was based on the frequency measured at 

bus bars 6 and 10.  

    For lack of space, we report here on only one simulation 

experiment. The transient stability of both systems was 

tested by simulating a 100 millisecond (6 cycles) solid 

three-phase fault in circuit number #1 (CKT1) of the tie-

line next to load bus 7. After the 6 cycle period the fault 

was cleared by tripping the shorted circuit CKT1. This 

fault represents the worst possible case involving a single 

tie-line circuit. The simulations were repeated for two 

different tie-line stress levels. The first set of simulations 

was performed for a relatively low initial power flow of 

200 MW from bus 7 to bus 9 while in the second set the 

initial power flow was 300 MW. 

    The virtual friction coefficient was adjusted to yield 

effective damping of inter-area oscillations, without risking 

the overload of the synchronverters during the most severe 

disturbance under consideration. The constants related to 

the voltage and reactive power control loop (K and 𝐷𝑞) 

were adjusted experimentally to allow for rapid terminal 

voltage recovery after the clearing of a severe fault while 

preventing an excessive voltage overshoot. The frequency 

droop constant 𝐷𝑝 corresponds to a speed regulation 

coefficient of 3%. The minimum and maximum values of 

the virtual magnetic flux linkage were set to yield a steady-

state back EMF 𝑒𝑞 between 30% and 200% of its value at 

the rated MVA of the synchronverter at a power factor of 

0.9. The remaining parameters were set according to [5]. 
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Fig. 3. Our two-area system containing either 3 SGs or 2 SGs and one synchronverter in each area
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The excitation system selected for the SGs was a DC 

rotating type exciter. This type of exciter and its associated 

AVR are characterized by a relatively slow time response 

to changes in SG terminal voltage. This may improve small 

signal stability but it is detrimental to the transient and the 

voltage stability of the interconnected system [13]. The 
power system stabilizer model used in conjunction with the 

exciter AVRs was a general purpose speed sensitive PSS.  

    Figure 4 (green and blue curves) shows the active power 

flow from area I to area II when the initial power flow 

through the interconnection is 300 MW, when the system 

is composed of 6 SGs without and with PSS. We see that 

the system becomes unstable with loss of synchronism 

approximately 1.8 seconds after the fault is cleared. By 
contrast, if two synchronverters with virtual friction are 

present (red and blue curves), then the system remains 

stable, with and without PSSs. Moreover, the oscillations 

in power flow are suppressed within 5 seconds. If the 

initial power flow is reduced to 200 MW, then the fault 

would cause severe tie-line power oscillations for several 

seconds, without loss of synchronism (not shown here for 

lack of space). 

4. Conclusions  

    By simulating short circuits lasting for 0.1 sec in a two-

area power system including conventional generators and 

one synchronverter in each area, we have observed that the 

system recovery is much quicker and smoother when the  

virtual friction feature is present. We have tried this with or 

without PSS in the generators, the results are similar. 
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