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Abstract. This paper presents a parameter estimation 
technique for the circuit of a photovoltaic module. The proposed 
method is based on unscented Kalman filter for the joint estimation 
of the state variables and the parameters involved in the model 
equations, using external measurements only. A case study is 
presented where the obtained estimation errors remain lower than 
3% in all cases. Additionally, three formulations of the Kalman 
filter are compared in terms of convergence and accuracy. This 
technique may contribute to the optimal operation of photovoltaic 
power plants and the maximization of the investor revenue. 

Key words. unscented Kalman filter, parameter 
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1. Introduction 
 
Renewable energy sources are becoming increasingly 
important due to the concern over global warming and fossil 
fuel reserves. Excluding hydro, wind and solar energies are 
the dominant sources. Particularly, photovoltaic (PV) 
systems installed power exceed 500 GW at the end of 2019. 
Only in the United States, solar PV has grown from being 
0.1 % of the US electrical energy supply at the beginning of 
2010 to 2.5 % by the end of the decade, [1]. 
The huge integration of alternate sources in electrical power 
systems (EPS) entails some technical challenges, such as 
the need of these intermittent power suppliers to contribute 
to voltage and frequency control, according to the existing 
grid codes. 
In this context, it is important for grid operators to have a 
deep knowledge of the models describing the dynamic 
evolution of PV plants. These models are determined by the 
parameters involved in their equations. An accurate 
determination of these parameters may contribute to the 
correct operation and control of power systems with high 
PV penetration. 
To approach the model parameter identification, [2]-[4] 
propose different analytical methods to calculate the 
parameters involved in a PV cell model. In these works, the 
parameter identification requires manufacturer information, 
which is supposed to be known and constant, even under 
changing operating or external conditions, such as snow and 
dust depositions on the PV panel. When this assumption is 
released, an alternative technique must be developed to 
obtain the parameter values. 

A number of researches on dynamic state estimators 
(DSEs) based on Kalman filters (KFs) prove their 
accuracy in power systems with nonlinear dynamics, [5]-
[6]. 
Among the different KF formulations, unscented Kalman 
filter (UKF) and extended Kalman filter (EKF), prove 
computational efficiency with synchronous machine 
dynamics, [7]. UKF has been used in different studies on 
state estimation in EPS, [8]. Parameter estimation is 
addressed in [9]-[10] for multi-machine power systems, 
using a set of internal measurements which are difficult to 
obtain in practice. 
These difficulties are overcome in [11]-[12], where phasor 
measurement units (PMUs) are used for the parameter 
estimation. 
Estimation techniques based on KFs are used in studies 
related to PV power generation. Short-circuit current 
estimation in a PV cell is approached in [13], while [14] 
proposes a method for the diagnosis of output power 
lowering in a PV array, which does not require high 
accuracy in the measurements. Maximum power point 
tracking (MPPT) is necessary in order to optimize the 
production of the PV power plant and the investor revenue. 
In this context, [15] and [16] propose MPPT techniques 
based on KFs, and [17] uses the UKF formulation with the 
same purpose. 
This work presents a state and parameter joint estimation 
of a PV panel model. The proposed technique is based on 
the UKF formulation. To the authors' knowledge this is the 
first attempt to use KFs in the parameter estimation of a 
PV module, using a set of external measurements. The 
proposed method is also compared to other non-linear KF 
formulations, as the cubature KF (CKF), [18], and the 
ensemble KF (EnKF), [19].  
The rest of the work is organized as follows. Section 2 
formulates the equations in the algorithm of the DSE 
considered, i.e., UKF. The equations modeling the system 
under study are presented in Section 3. The 
implementation of the proposed UKF technique is 
described in Section 4, while Section 5 presents the 
estimation results with a scenario considered to test the 
accuracy of the estimator. Finally, the conclusions 
obtained of the estimation results presented are included 
in Section 6. 
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2. Unscented Kalman filter 
 
Kalman Filter implementations involve a set of state 
equations, including the dynamic and the measurement 
equations. In the case of continuous-time, discrete-
measurement, non-linear systems, these equations can be 
expressed as 
 

�̇�(𝒕) = 𝒇൫𝒙(𝒕), 𝒖(𝒕)൯ + 𝒘(𝒕) (1) 
 

𝒛(𝒕𝒌) = 𝒈൫𝒙(𝒕𝒌), 𝒖(𝒕𝒌)൯ + 𝒗(𝒕𝒌) (2) 
 
where 𝒙(𝒕) is the state vector, 𝒖(𝒕) the system input, and 
𝒛(𝒕𝒌) the available measurements at instant 𝒕𝒌. The model 
and measurement noises, 𝒘(𝒕) and 𝒗(𝒕𝒌), are assumed 
Gaussian processes with covariance matrices 𝑸 and 𝑹, 
respectively. The above equations have the following 
discrete counterparts: 
 

𝒙𝒌 = 𝒇(𝒙𝒌ି𝟏, 𝒖𝒌ି𝟏) + 𝒘𝒌 (3) 
 

                        𝒛𝒌 = 𝒈(𝒙𝒌, 𝒖𝒌) + 𝒗𝒌 (4) 
 
which are more appropriate for non-linear Kalman filtering 
techniques, like the EKF and UKF. 
 
A. Prediction Stage 
 
For each iteration at instant 𝒌, a cloud of 𝟐𝑳 + 𝟏 vectors, 
called 𝝈-points, is calculated from the estimated expected 
value of the state vector,  𝒙ෝ𝒌ି𝟏 (dimension 𝑳), and the 
covariance matrix of the state estimation error, 𝑷𝒌ି𝟏, using 
the following expression, [20]: 
 

⎩
⎪
⎨

⎪
⎧ 𝐱𝐤ି𝟏

𝟎 = 𝐱ො𝐤ି𝟏

𝐱𝐤ି𝟏
𝐢 = 𝐱ො𝐤ି𝟏 + ቂඥ(𝐋 + 𝛌)𝐏𝐤ି𝟏ቃ

𝐢

𝐱𝐤ି𝟏
𝐢ା𝐋 = 𝐱ො𝐤ି𝟏 − ቂඥ(𝐋 + 𝛌)𝐏𝐤ି𝟏ቃ

𝐢ା𝐋

 

 
𝒊 = 𝟏, … , 𝑳 

(5) 

 
 

where ൣඥ(𝑳 + 𝛌)𝑷𝒌ି𝟏൧
𝒊
 is the 𝒊𝒕𝒉column of the matrix 

ඥ(𝑳 + 𝛌)𝑷𝒌ି𝟏, and 𝛌 is a scaling factor calculated as 
 

𝛌 = 𝛂𝟐(𝑳 + 𝛋) − 𝑳 (6) 
   
with 𝛂 and 𝛋 being two filter parameters to be tuned. 
 
Those 𝛔-points are evaluated in (3) obtaining 𝟐𝑳 + 𝟏 
resultant vectors, 𝒙𝒌

𝒊ି, from which to obtain the a priori 
estimations 𝒙ෝ𝒌

ି and 𝑷𝒌
ି: 

 

𝒙ෝ𝒌
ି = ෍ 𝑾𝒎𝒊

𝟐𝑳

𝒊ୀ𝟎

𝒙𝒌
𝒊ି (7) 

 

𝑷𝒌
ି = ෍ 𝑾𝒄𝒊൫𝒙𝒌

𝒊ି − 𝒙ෝ𝒌
ି൯൫𝒙𝒌

𝒊ି − 𝒙ෝ𝒌
ି൯

𝑻
𝟐𝑳

𝒊ୀ𝟎

+ 𝑸𝒌 (8) 

where the weighting vectors 𝑾𝒎 and 𝑾𝒄 are calculated as 
follows: 
 

⎩
⎪
⎨

⎪
⎧ 𝐖𝐦𝟎 =

𝛌

𝐋 + 𝛌

𝐖𝐜𝟎 =
𝛌

𝐋 + 𝛌
+ 𝟏 − 𝛂𝟐 + 𝛃

𝐖𝐦𝐢 = 𝐖𝐜𝐢 =
𝟏

𝟐(𝐋 + 𝛌)

 

 
𝒊 = 𝟏, … , 𝟐𝑳 

(9) 

 
and 𝛃 is another tunable parameter. 
 
B. Correction Stage 
 
On the basis of the a priori estimations, a new cloud of 
vectors is calculated, 
  

⎩
⎪
⎨

⎪
⎧

𝐱𝐤
𝟎ି = 𝐱ො𝐤

ି

𝐱𝐤
𝐢ି = 𝒙ෝ𝒌

ି + ൤ට(𝐋 + 𝛌)𝐏𝐤
ି൨

𝐢

𝐱𝐤
(𝐢ା𝐋)ି = 𝐱ො𝐤

ି − ൤ට(𝐋 + 𝛌)𝐏𝐤
ି൨

𝐢ା𝐋

 

 
𝒊 = 𝟏, … , 𝑳 

(10) 

 
and evaluated with the measurement function 𝒈(·)  in (4) 
yielding  
  

𝛄𝒌
𝒊ି = 𝒈൫𝒙𝒌

𝒊ି, 𝒖𝒌൯ 
 

𝒊 = 𝟎, … , 𝟐𝑳 
(11) 

 
Those values are weighted using the vector 𝑾𝒎  defined 
in equation (9), 
  

𝒛ො𝒌
ି = ෍ 𝑾𝒎𝒊

𝟐𝑳

𝒊ୀ𝟎

𝛄𝒌
𝒊ି (12) 

 
Then, the covariance matrix of the measurement 
estimation error, 𝑷𝒛𝒌

ି , and the cross-covariance matrix of 
state and measurements, 𝑷𝒙𝒛𝒌

ି , are obtained using the 
vector 𝑾𝒄, as follows: 
  

𝑷𝒛𝒌
ି = ෍ 𝑾𝒄𝒊(𝛄𝒊ି − 𝒛ො𝒌

ି)൫𝛄𝒌
𝒊ି − 𝒛ො𝒌

ି൯
𝑻

𝟐𝑳

𝒊ୀ𝟎

+ 𝑹𝒌 (13) 

 

𝑷𝒙𝒛𝒌
ି = ෍ 𝑾𝒄𝒊൫𝒙𝒌

𝒊ି − 𝒙ෝ𝒌
ି൯൫𝛄𝒌

𝒊ି − 𝒛ො𝒌
ି൯

𝑻
𝟐𝑳

𝒊ୀ𝟎

 (14) 

  
 
By using the a priori predictions at instant 𝒌 , from (7)-(8) 
and (13)-(14), both the Kalman gain, 𝑲𝒌 , calculated as 
 

𝑲𝒌 = 𝑷𝒙𝒛𝒌
ି (𝑷𝒛𝒌

ି )ି𝟏 (15) 
 
and the respective a posteriori prediction can be obtained, 
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𝒙ෝ𝒌 = 𝒙ෝ𝒌
ି+𝑲𝒌(𝒛𝒌 − 𝒛ො𝒌

ି)𝑻 (16) 
 

𝑷𝒌 = 𝑷𝒌
ି − 𝑲𝒌𝑷𝒛𝒌

ି 𝑲𝒌
𝑻 (17) 

 
which are needed for the next algorithm iteration. 
 
3. System Modeling 
 
The proposed technique for the joint estimation of the state 
variables and parameters in the system under study requires 
a deep knowledge of the equations modeling the behavior 
of the PV panel. To approach this issue, this section presents 
the equations of the five-parameter model for the single-
diode equivalent circuit of a PV module, [21], as shown in 
Fig.  1. 
 

 
Fig.  1 Single-diode, five-parameter circuit for a PV module 

 
The terminal current, 𝐼, is obtained using Kirchhoff's 
current law as follows: 
 

𝐼 = 𝐼௉௏ − 𝐼஽ −
𝑉 + 𝑅௦𝐼

𝑅௣

 (18) 

  
where 𝐼஽ is the current through the diode, represented by 
Shockley diode equation (19), 
 

𝐼஽ = 𝐼௡ ൬𝑒
௤(௏ାோೞூ)
஺⋅ே⋅௞⋅் − 1൰ (19) 

 
being,  
 

𝐼௡: reverse bias saturation current of the diode.  
𝑞: electron charge.  
𝑉: terminal voltage of the PV system.  
𝑅௦: series resistance.  
𝑅௣: parallel resistance.  
𝐴: diode ideality factor.  
𝑁௦: number of cells connected in series per module.  
𝑘 : Boltzmann constant.  
𝑇: temperature of the panel.  

 
Regarding the current produced by the panel, 𝐼௉௏, in 
equation (18), it is formulated as a function of the irradiance 
absorbed by the panel, 𝐺, and its temperature, yielding the 
following equation:  
 

𝐼௉௏ =
𝐺

𝐺௥௘௙
ቀ𝐼௅

௥௘௙
+ μ(𝑇 − 𝑇௥௘௙)ቁ (20) 

 
where each term is defined as:  
 
   𝑇௥௘௙: reference temperature.  

   𝐺௥௘௙: reference irradiance.  
   𝐼௅

௥௘௙: current produced under reference conditions.  
   μ: temperature coefficient.  
 
Finally, the value of 𝐺 depends on the solar irradiance, 𝐺௦, 
and a so-called panel absorption factor, α, yielding the 
following expression: 
 

𝐺 = α ⋅ 𝐺௦ (21) 
 
4. Implementation of UKF 
 
DSEs require the previous knowledge of the parameters 
involved in the model equations. Although these 
parameters usually have typical values, when these are not 
accurately known, or are modified because of changes in 
operating conditions, UKF can be used for a joint 
estimation of state variables and parameters, [22], so that 
an augmented state vector is defined as: 
 

𝒙𝒂 = [𝒙𝑻, 𝝍𝑻]𝑻 
 
with vector  𝒙  containing the state variables in the model 
considered for the UKF, and  𝛙  the model parameters. For 
the five-parameter model presented in section 3, the state 
vector  𝒙  is defined as: 
 

𝒙𝑻 = [𝑽, 𝑮, 𝑻] 
 
Regarding the model parameter vector,  𝛙 , it is composed 
by: 
 

𝛙𝑻 = ൣ𝑹𝒔, 𝑹𝒑, 𝑰𝒏, 𝛍, 𝑨, 𝛂൧ 
 
being the size of the augmented state vector  𝑳 = 𝟗. In the 
proposed implementation of the UKF, four variables are 
supposed to be obtained from the system under study, 
namely the terminal voltage, 𝑽, and current, 𝑰, the solar 
radiation, 𝑮𝒔, and the temperature, 𝑻. These magnitudes 
compose the measurement vector  𝒛, as used in section 2, 
 

𝒛𝒌
𝑻 = ൣ𝑰𝒌, 𝑽𝒌, 𝑮𝒔,𝒌, 𝑻𝒌൧ 

 
Note that the variables 𝑽, 𝑮 and 𝑻 are typically taken as 
system inputs. However, with the proposed 
implementation of the UKF it is possible to deal with 
errors in these measurements, which would not be 
considered otherwise. 
A smooth variation is assumed for the state vector 𝒙, as a 
Gaussian random walk, given that the state variables are 
time dependent, but the variation is unknown. With this 
assumption, equation (3) is substituted by: 
 

𝒙𝒂,𝒌 = 𝒙𝒂,𝒌ି𝟏 + 𝒘𝒌 (22) 
 
 Regarding the measurement function  𝒈(⋅) in equation 
(4), it is not possible to obtain an expression of the terminal 
current 𝑰 from the model equations presented in section 3. 
The solution proposed in this work consists in solving the 
following implicit equation at each instant 𝒌, 
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𝑰𝒌 =
𝑮𝒌

𝑮𝒓𝒆𝒇
ቀ𝑰𝑳

𝒓𝒆𝒇
+ 𝛍𝒌൫𝑻𝒌 − 𝑻𝒓𝒆𝒇൯ቁ − 

                          𝑰𝒏,𝒌 ൭𝒆

𝒒ቀ𝐕𝐤శ𝐑𝐬,𝐤𝐈𝐤ቁ

𝐀𝐤⋅𝐍⋅𝐤⋅𝐓𝐤 − 𝟏൱ −
𝐕𝐤ା𝐑𝐬,𝐤𝐈𝐤

𝐑𝐩,𝐤
 

 
 
This method may not be used with other KF formulations, 
like the EKF, as it requires the calculation of the Jacobian 
matrix of the measurement function. The expressions 
related to 𝑽𝒌 and 𝑻𝒌 are trivial, since they are state 
variables, while the solar radiation is obtained as: 
 

𝑮𝒔,𝒌 =
𝑮𝒌

𝛂𝒌

 (23) 

 
The UKF requires an initial estimation for 𝒙𝒂, which will be 
presented in section 5. Regarding the covariance of this 
initial estimation error, it is defined by a diagonal matrix, 
namely 𝑷𝟎 = 𝐝𝐢𝐚𝐠൫ൣ𝑷𝒙𝟎

𝑻 , 𝑷𝛙𝟎
𝑻 ൧൯, where 𝑷𝒙𝟎, corresponding 

to the state variables, has been defined as  
 

𝑷𝒙𝟎
𝑻 = [𝟏𝟎ି𝟒, 𝟏𝟎ି𝟒, 𝟏𝟎ି𝟒] 

 
and 𝑷𝛙𝟎, related to the model parameters, yields 
 

𝑷𝛙𝟎
𝑻 = [𝟏, 𝟏, 𝟏, 𝟏, 𝟏, 𝟏] 

 
The UKF has been implemented considering 𝛂 = 𝟏𝟎ି𝟒,  
𝛋 = 𝟑 − 𝑳  and  𝛃 = 𝟐 , following the results found in 
works on the influence of these scaling parameters in the 
estimation, [23]. The measurement noise covariance matrix 
𝑹 is taken as a diagonal matrix with  𝑹𝒊𝒊 = 𝟏𝟎ି𝟒  for the 
terminal voltage and current, meaning a 𝟏% standard 
deviation error, and 𝑹𝒊𝒊 = 𝟏𝟎ି𝟐 for the solar radiation and 
the temperature, considering that the measurement errors 
for these variables are substantially higher. 
Finally, the model noise covariance matrix 𝑸 is defined in 
this work as 𝑸 = 𝐝𝐢𝐚𝐠൫ൣ𝑸𝒙

𝑻, 𝑸𝛙
𝑻 ൧൯, where: 

 
𝑸𝒙

𝑻 = [𝟏𝟎ି𝟐, 𝟏𝟎ି𝟐, 𝟏𝟎ି𝟐] 
 
corresponds to the state variables, and 
 

𝑸𝛙
𝑻 = [𝟏𝟎ି𝟒, 𝟏𝟎ି𝟒, 𝟏𝟎ି𝟒, 𝟏𝟎ି𝟒, 𝟏𝟎ି𝟒, 𝟏𝟎ି𝟒] 

 
to the model parameters. 
The presented implementation is used in the case study 
presented in the next section, with no fine-tuning required. 
 
5. Case Study 
 
The performance of the proposed estimation technique is 
tested in this section. A five-parameter model has been 
considered for the simulation, given that the obtained 
measurements were similar to those extracted from a more 
complex model, [24], and in this manner, it is possible to 
count on simulation values for the model parameters to 
compare with the estimated ones. In the operating point 
considered, the reference conditions and the simulated 
values of the model parameters are summarized in Table I.  

 
Table I. - Simulation values for the PV module 

Variable Unit Value 
𝑮𝒓𝒆𝒇 𝐖/𝐦𝟐  1000 
𝑻𝒓𝒆𝒇 K 298 

𝑰𝑳
𝒓𝒆𝒇 A 6 

𝑹𝒔 𝛀 0.221 
𝑹𝒑 𝛀 415 
𝛍 A/K 0.0032 
𝑨 pu 1.5 
𝑰𝒏 A 𝟖. 𝟐 ⋅ 𝟏𝟎ି𝟔 
𝛂 pu 0.8 

𝑵𝒔 - 54 
 
For the terminal DC voltage 𝑽 (system input, 𝒖), a smooth 
evolution has been modeled, considering a Gaussian 
random walk with standard deviation 𝑹𝒘 = 𝟏𝟎ି𝟐, as 
depicted in Fig.  2. 
 

 
Fig.  2. Evolution of the DC terminal voltage. 

The total simulation time is 8h, as it can be noticed from 
Fig.  2, while the sample period considered for the UKF 
implementation is  𝚫𝒕 =  𝟏 min. Typical profiles have 
been taken for the solar radiation, 𝑮𝒔, and the module 
temperature 𝑻, as shown in Fig. 3, [25]. 
For the initial estimation of the augmented state vector,  
𝒙ෝ𝒂𝟎, the corresponding initial measurements are 
considered for the state variables, while, regarding the 
parameter vector 𝛙, random initial values are used in the 
range of ± 20% to ± 40% of their values in the simulation. 
The performance of the proposed UKF algorithm resulted 
consistent in the estimation of the model parameters, as 
shown in Fig. 4, being the final estimated values 
summarized in Table II. For each parameter, the estimated 
value,  𝒙ଙෝ  , is represented jointly with a deviation equal to  
𝒙ଙෝ ± 𝟑ඥ𝑷𝒊𝒊. Please note that the covariances tend to 𝑸𝒊𝒊, 
as it would be expected from an accurate estimation. 
It is observed how most of the parameters evolve smoothly 
to values close to those taken in the simulation, with a 
maximum relative error under 3% in all cases, giving 
evidence of the good performance of the proposed 
technique. 
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Fig.  3. Evolution of the solar radiation and cell temperature 

 
Table II. - Relative error in the parameter estimation 

Parameter Units Estimated Value Error (%) 
𝑹𝒔 𝛀 0.219 0.91 
𝑹𝒑 𝛀 410.8 1.01 

𝑨 pu 1.458 2.80 
𝝁 A/K 0.00313 2.19 
𝑰𝒏 A 𝟖. 𝟑𝟐 ⋅ 𝟏𝟎ି𝟔 1.46 
𝜶 pu 0.813 1.63 

 
It can also be noticed how the convergence of the estimation 
is quick for all the parameters included in the UKF model, 
with a maximum time lower than 3 h in all cases. This time 
can be higher in other applications of the KF, particularly in 
those with a more complex model, [11]. 
To conclude this case study, the performance of the UKF is 
compared to other non-linear KF-based estimators, namely 
CKF and the EnKF. The estimation results obtained for the 
parallel resistance , 𝑹𝒑, are compared in Fig. 5 for the three 
KF formulations. It can be noticed how the accuracy of the 
UKF is slightly better than that of the CKF, while the EnKF 
scheme has shown convergence problems. 

 
6. Conclusion 
 
In this paper, an UKF implementation is proposed to jointly 
estimate the state variables and parameters of a PV cell 
model. The accuracy in the estimation of the terminal 
current has also been assessed for the considered five-
parameter model. 
The performance of three KF formulations have been 
compared, resulting on similar results for the UKF and 
CKF, while the EnKF scheme showed convergence issues.  
The main contribution of this work lies on the use of the 
UKF algorithm when the system model lacks a state 
function, as it is used in equation (1). The presented case 
study has shown that the proposed estimator yields accurate 
enough results in the parameter estimation, with a 
maximum relative error lower than 3%. The proposed 
identification technique may help with the plant 
management and the optimization of the economic benefit. 
 
 

 
Fig.  4. Parameter estimation results 
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Fig.  5. Comparison of the estimation results for different KF 
formulations 
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