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Abstract. This paper implements nonlinear control structure 

based on Adaptive Fuzzy Sliding Mode (AFSM) Current Control 

and Unscented Kalman Filter (UKF) to estimate the capacitor 

voltages from the measurement of arm currents of Modular 

Multilevel Converter (MMC). UKF use nonlinear unscented 

transforms in the prediction step in order to preserve the 

stochastic characteristics of a nonlinear system. In order to 

design adaptive robust control strategy and nonlinear observer, 

mathematical model of MMC using rotating d-q theory has been 

used.  Digital time-domain simulation studies are carried out in 

the Matlab/Simulink environment to verify the performance of 

the overall proposed control structure during different case 

studies.    
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1. Introduction 

 
Power electronic converters should have a high reliability, 

high efficiency, good harmonic performance, low cost, 

and a small footprint. Modular Multilevel Converters 

(MMC) are promising solutions for high power converters 

since they allow the combination of excellent harmonic 

performance and low switching frequencies [1-2]. 

Modular Multilevel Converter (MMC) is a new form of 

multilevel converter and it is a big improvement in this 

area especially for interconnection of High Voltage DC 

(HVDC) transmission system and large wind farms [3]. 

Regarding to the many control complexities in MMC due 

to modularity, high number of sub modules parameters 

and limitation of measurements of all voltages and 

currents, some control strategies have been present by 

literatures which are categorized as control strategies of 

MMC for submodule (SM) voltage balancing [4-5], 

circulating current suppressing [6-7] and AC side current 

control for grid connected application [8].  In most 

presented works, the analysis of MMC during unbalanced 

grid conditions has not been investigated. Moreover, a 

comprehensive dynamic model for MMC that combines 

symmetrical positive and negative sequences is needed to 

design advanced control structures. Therefore, in 

continuing of the proposed control strategies and for 

making the MMC performance robust during unbalanced 

grid conditions with unknown constant parameters, an 

non-linear control structure for grid connected MMC is 

proposed. The control structure is composed adaptive 

fuzzy sliding mode (AFSM) control and non-linera 

observer based on unscented kalman filter (UKF). Due to 

high nonlinearities in model of MMC during unbalanced 

grid condition, using of fuzzy sliding mode control is 

proposed. An adaptive learning method also is added to 

this structure to train the parameters of controller real-

time. In this structure, the capacitance value of the cell 

capacitors as a uncertain parameter which should be 

measured carefully. In order to design the observer, from 

the developed nonlinear model of MMC, a nonlinear 

observer based on unscented kalman filter (UKF) is 

employed to estimate the capacitor voltage of each cell. 

The unscented transform is a nonlinear transformation that 

propagates the mean and covariance through a nonlinear 

function. This method is based on a set of chosen sample 

point, known as sigma points, and preserves the nonlinear 

nature of the system. One way to handle nonlinear models 

and transformations is to combine kalman filter with the 

unscented transform to obtain the unscented kalman filter 

[10]. This approach is very promising in power electronic 

converters because their nonlinear model is known with 

sufficient accuracy. The first measurement considered is 

the arm currents which are the controlled variables and 

makes it possible to estimate the capacitor voltages. 

Afterward, it is necessary to know the dc-link voltage 

state, because of the capacitors voltages references depend 

on it. Finally, some illustrative simulation results of MMC 

are demonstrated to confirm the feasibility of the proposed 

PWM algorithm as well as the designed observer. This 
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paper is organized as follow.  Section II presents the 

MMC model. The discrete UKF and observer are 

described in section III. In section IV, the control design 

is proposed. Section V shows the simulation results. 

Conclusion is given in section VI.  

 

 

2.  Modelling of Modular Multilevel 

Converter 

The typical structure of a MMC is shown in Fig. 1, and 

the configuration of a SubModule (SM) is given in Fig. 

2. Each SM is a simple chopper cell composed of two 

IGBT switches (T1 and T2), two anti-parallel diodes (D1 

and D2) and a capacitor C [2-3].   

 
Fig.1 The typical structure of a MMC 

 

 
Fig.2 Configuration of a SubModule (SM) fo MMC 

 

From Figs.1 and 2, the mathematical equations 

describing the dynamic behavior of a N-cells MMC 

are expressed as follows: 
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where ip, in ui, VCi_u VCi_l, and Va are upper/lower are 

currents, gating signal of upper gate, upper and lower 

capacitor voltages of the i-th cell, and phase a voltage 

respectively. 
 

3. Unscented Kalman Filter (UKF) and 

Observer Design 
 

The KF was originally developed for linear systems but 

later applied to nonlinear systems using the linearized or 

extended kalman filter (EKF) and its performance is 

acceptable if the system nonlinearity is not severe. Its 

simplicity, together with the popularity of the KF, makes 

it the most widely applied nonlinear state estimator [10]. 

The discrete KF uses the first two statistical moments and 

updates them with time. This is the key idea when 

combining the UT and KF to obtain UKF. The UKF is 

basically the discrete KF in which a UT is used to obtain 

the mean and covariance updates. The UKF as presented 

here is a simplified UKF which is suitable for estimation 

of IM states. In general, the observation model can also 

be nonlinear, and all parameters and functions can be 

time varying. Moreover, the UKF can be extended to the 

case of nonadditive noise [10]. The discrete-time 

nonlinear system is given as follow: 

   1 ( , (k)) (k)x k f x k u                (2) 

and a linear measurement model 

 y(k)= H.x(k)+v(k)                                    (3) 

where x(k) is an n × 1 state vector, y(k) is an m × 1 

measurement vector, H is the measurement matrix (m × 

n), and f(x(k),u(k)) is a known nonlinear state transition 

vector. We assume that the process noise w(k) is white 

and zero mean with covariance matrix Q and the 

measurement noise v(k) is also white and zero mean with 

covariance matrix R. We also have estimates of the initial 

state (0)x


and the initial error covariance matrix (0)P . 

The iterations in the classic KF consist of a prediction 

step followed by a correction step. For the correction 

step, we use the discrete KF equations 

 

- T - T -1

+ - -

+ -

K(k +1)= P (k).H .(H.P (k).H + R)

x (k)= x (k)+ K k .(y(k)- H.x (k))

P (k)= (I - K(k).H).P (k)

   (4) 

where K(k) is the Kalman gain. 

The prediction step in the KF is the projection of the 

mean 
+

x (k)  and covariance P (k) in time using the state 

equation (recall that the KF estimates are unbiased). For 

the nonlinear system of (1), the state equation is a 

nonlinear transformation of a stochastic input x(k). 

Hence, we can use the UT to obtain the mean x (k 1)


  

and covariance P (k 1)    of its output. To use the discrete 

KF, the MMC model is discretized by 

solving the system’s state equation to determine the 

states at the sampling instants. The resulting system is: 
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Now, the state space model of MMC is related to the 

UKF structure. The state vector is chosen as  

_ _i u i lp n C CX i i V V 
 

                                            (6) 

The arm currents are the measured output, and the 

measurement is 

1 0 0 0

0 1 0 0
H

 
  
 

                                                    (7) 

Thus, the measurement model is linear as in (3). Next, 

the UKF observer is implemented using (3)-(4) to 

accurately estimate the capacitor voltages.   

 

4. Adaptive Fuzzy Sliding Mode Control 

Design 
 
For the control plant given in (5), the sliding mode 

control law can be derived in order to reach a desired 

value of the output currents at sampling instants t=kT, the 

following condition has to fulfilled.  

 

                        
(k) (k)

(k) (k)

ref

p p p

ref
n n n

S i i

S i i
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               (8) 

Where 
ref

pi  and 
ref

ni  are the specified current vector 

commands and S(k) = S(x(k)) represents the discrete-time 

sliding-mode surface control and x(k) represents the 

discrete state vector of the converter.  

The sliding-mode control theory has been widely 

employed to control nonlinear systems, especially the 

systems that have model uncertainty and external 

disturbance [11]. Robustness is the best advantage of a 

sliding-mode control. It employs a noncontiguous control 

effort to drive the system toward a sliding surface, and 

then switches on that surface. Theoretically, it will 

gradually approach the control objective, the origin of a 

phase plane. The fuzzy logic controller needs only simple 

computation and programming capacity to represent 

human control behavior, and, in recent years, has had 

widespread use in engineering applications. Since there is 

a lack of theoretical modeling and analysis for the FLC 

stability and robustness problem, the commercial 

industrial application has progressed slowly. The fuzzy 

system was used to approximate an optimal controller, 

which was adjusted by an adaptive law based on 

Lyapunov stability theory. However, this kind of direct 

adaptive law is limited to the nonlinear system with 

constant control gain. After that, the fuzzy direct control 

scheme was proposed [12]. This control architecture 

employed a fuzzy system to approximate an optimal 

controller that was designed based on the assumption that 

all the dynamics in the system were known, and then a 

fuzzy sliding controller was added to the adaptive 

controller for compensating the uncertainties and 

smoothing the control signal.  

Define, e is the phase plane variable. Then, the sliding 

surface on the phase plane can be defined as:  

 

1 1

2 2

•

ref ref

e ed d
s = +l e = +

e edt dt

s = ( X - AX(t)- g(t)u)+ (X - X(t))


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  (9)              

 

Based on the Lyapunov theorem, the sliding surface 

reaching condition is  .s s


 0. If a control input u can be 

chosen to satisfy this reaching condition, the control 

system will converge to the origin of the phase plane. 

From (5) and (9), it can be concluded that the variable 

g(t) is always a positive/negative value for 

charging/discharging conditions. It can also be found that 

increases as decreases and vice versa in (7). If s  0, then 

increasing u will result in decreasing .When the condition 

is s 0, will decrease with the decreasing of u. Based on 

this qualitative analysis, the control input can be designed 

in an attempt to satisfy the inequality. Here, a new 

control strategy with an FLC-based direct adaptive 

controller is proposed, the control law of which is 

generated directly from the output of an FLC. The 

control voltage change for each sampling step is derived 

from fuzzy inference and defuzzification calculation 

instead of the equivalent control law derived from the 

nominal model at the sliding surface. It can diminish the 

chattering phenomenon of the traditional sliding-mode 

control. The controller design does not need a 

mathematical model and without constant gain limitation. 

The block diagram is shown in Fig. 3. An online 

parameters tuning algorithm is developed based on the 

steep descent rule. The consequent parameters of the 

FLC can be initially set to zero, then, the novel 

parameters tuning algorithm is used to adjust the 

consequent parameters to monitor the system control 

performance. The sliding surface variable is employed as 

the one-dimensional fuzzy input variable. The control 

law is the output of the FLC which is a function of (A, s, 

g(t), e, t) . Here, seven triangular membership functions 

are used for the fuzzy input (s) and output (u) variables. 

Since the proposed control strategy has on-line tuning 

algorithm for fuzzy rules adjustment, the number of rules 

is not critical.  

 

Fig.3 Control system block diagram of an Adaptive Fuzzy 

Sliding Mode Control 

 

The minimum number of the rules is three for this control 

strategy. Here, seven fuzzy rules are employed in this 
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control system to obtain appropriate dynamic response 

and control accuracy. The input membership functions 

are scaled into the range of -1 and 1 with equal span. The 

control law is derived from the fuzzy inference decision 

and defuzzification operation. 
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Where m is the rules number and C
j
 is the consequent 

parameter. Which can be initially set to zero as a zero 

fuzzy rule beginning. An adaptive rule is used to adjust 

or update it. The adaptive rule is derived from the steep 

descent rule to minimize the value of with respect to C
j
. 

Then, the modification equation of the parameter is 
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where  is the adaptive rate parameter. Based on the 

chain rule, the above equation can be rewritten as 
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where the adaptive rate parameter  and the system input 

parameter g(t) are combined as a learning rate parameter 

. Then, the central positions of the defuzzification 

membership functions can be regulated directly through 

the modification of consequent parameter, C
j
. Hence, it 

achieves the objectives of online learning and fuzzy rules 

adjustment. This adaptive rule has two main 

contributions to this proposed model-free fuzzy sliding-

mode control. Firstly, it simplifies the implementation of 

fuzzy control without trial-and-error process for finding 

appropriate fuzzy rules. Secondly, this online adaptive 

rule also has the effect of improving the stability property 

and increasing the speed of reaching the sliding surface 

due to the steep descent rule. 
 

5. Simulation Results 
In order to evaluate the performance of the proposed 

control strategy and nonlinear observer performance, 

simulation results are carried out in MATLAB/Simulink 

software with the nominal parameters given in Table I. 

The set-points for the transferred real and reactive power 

at t = 0 are set to 300 kW and 0 kVar , respectively. A 

real power flow command is applied at t = 5 s by 

changing the reference of real power  to Pref  = 200kW.  

In Fig.4, the estimated capacitor voltage has been 

illustrated. The three-phase line-line voltages are shown 

in Fig. 5. It clearly reveals the presence of eight levels of 

voltage, as expected. The charge and discharge of the 

capacitors cause the voltage levels to vary within 

acceptable limits. The eight capacitor voltages of phase A 

are presented in Fig.6. The sorting algorithm ensure that 

all the capacitors are fairly balanced at reference voltage 

150V. They have a voltage variation of around 10% of 

this value.  

TABLE I.  Parmaters of MMC 

Nominal Parameters  

DC link voltage 600 V 

Rated line-line voltage 600 V 

Number of Cells per arm 4 

Cell capacitance 800µF 

Rated frequency 50Hz 

Carrier frequency 1850 Hz 

Arm inductance 5mH 

Arm resistance 15mΩ 

 
Fig.4. the estimated capacitor voltage 

 
Fig.5. three-phase line-line voltages 

 

 
Fig.6. simulated eight capacitor voltages 

 

In Fig.7, the voltage across the top cell of phase A is 

presented. It shows that the cell switches 18 times in a 

cycle. This leads to a switching frequency of 
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approximately 1 kHz for the IGBT, which is an 

acceptable at this rating.  The arm currents and load 

current for phase A are illustrated in Fig.8 There is a 

circulating dc that flows through the arms and the dc bus. 

This dc current helps to maintain the power balance in 

the capacitors.  

 
Fig.7. Output Voltage of top cell in phase A 

 
Fig.8. Upper/lower arm and load currents 

 

Fig.9 shows the dynamic response of the MMC to the 

power flow command. It shows the corresponding 

changes in the transferred real and reactive power and 

there is an improvement in the steady-state and transient 

behavior of active power due to the implementation of 

proposed robust controller.  

 
Fig.9. dynamic response of the MMC to the step power 

command. 

 

 

The d and q axis current components are presented in 

Fig.10. As shown, the proposed current control strategy 

is capable to track the current references properly and it 

can overcome the drawback of the traditional decoupling 

control easily. Moreover, it is seen that there are no 

transient conditions in response of proposed controller.  

 
Fig.10. d and q axis current components 

 

In order to evalautae the dynamic response of the 

proposed controller structure, another simulation case has 

been performed. In this case, the DC voltage control and 

reactive power reference control are presented. The 

ability of reactive power control was tested and the 

circullating current and voltage balancing control 

behavior during reactive power change were evaluated. 

At t=0.2s the circullating current strategy control (CCSC)  

is enabled and at t=0.4 sec the reactive power has a step 

change from 0 p.u. to 0.33 p.u. The results are shown in 

Fig.11. 

   
Fig.11. (a) enable signal for CCSC (b) reactive power and 

reference value (c) DC voltage (d) circulating current (e) SM 

capacitor voltages in upper arm of phase A 

 
 

6. Conclusion 
This paper develops the robust Sliding Mode Current 

Control and Unscented Kalman Filter (UKF) to estimate 

the capacitor voltages from the measurement of arm 
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currents of Modular Multilevel Converter (MMC). UKF 

use nonlinear unscented transforms in the prediction step 

in order to preserve the stochastic characteristics of a 

nonlinear system. In order to design robust control 

strategy and nonlinear observer, mathematical model of 

MMC using rotating d-q theory has been used.  Digital 

time-domain simulation studies are carried out in the 

Matlab/Simulink environment to verify the performance 

of the overall proposed control system. Simulation results 

show that the proposed controller is able to track the 

references of real and reactive power properly and reduce 

significantly overshoot in the output response. 
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