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Abstract. Electricity short-term load forecast is very 
important for the operation of power systems. In this work a 
classical exponential smoothing model, the Holt-Winters with 
double seasonality was used to test for accurate predictions 
applied to the Portuguese demand time series.  
Some metaheuristic algorithms for the optimal selection of the 
smoothing parameters of the Holt-Winters forecast function were 
used and the results after testing in the time series showed little 
differences among methods, so the use of the simple local search 
algorithms is recommended as they are easier to implement.   
 
Key words 
 
Electricity demand, Load forecast, Combinatorial 
optimization, Evolutionary algorithms. 

 
1. Introduction 
 
Electricity demand forecasting is very important for the 
management of power systems. Long-term forecasts of the 
peak electricity demand are needed for capacity planning 
and maintenance scheduling. Medium-term demand 
forecasts (from several weeks up to one year) are required 
for power system operation and planning. Short-term load 
forecasts are required for scheduling and regulation of 
power systems. Short-term forecasts are also required by 
transmission companies when a self-dispatching market is 
in operation [1]. Error in predicting electricity load has 
significant cost implications for companies operating in 
competitive power markets [2].   
 In the short run, the load is mainly influenced by 
meteorological conditions, seasonal effects (daily, weekly 
cycles, calendar holidays) and special events. Weather 
related variation is certainly critical in predicting 
electricity demand for lead times beyond a day-ahead. 
However when the interest is in shorter lead times (four, 
six hours until a day-ahead), a univariate model will be 
sufficient because the meteorological variables tent to 
change in a smooth fashion, which will be captured in the 
demand series itself. It can be used also for longer lead 
times (three, four days a week maximum) when there is a 
lack of readily available weather forecasts.  

The stochastic nature of demand as a function of time has 
been frequently modeled with seasonal ARIMA and state 
space models. ARIMA modeling is also used by many as 
a sophisticated benchmark for evaluating alternative 
proposals such as neural networks. Artificial neural 
networks (ANNs) have featured prominently in the load 
forecasting literature [3]. Their nonlinear and 
nonparametric features have been useful for multivariate 
modeling in terms of weather variables. 
Simpler methods, such as general exponential smoothing 
are always attractive due to the small number of 
parameters involved, which make them easy to 
implement.  In a study [4]-[5], methods for short-term 
load forecast are reviewed to compare a variety of 
univariate methods. These studies concluded that a 
double seasonal version of Holt-Winters (HW) 
exponential smoothing was the most accurate method. 
  
 
2. Holt-Winters Exponential Smoothing for 

Double Seasonality 
 

The exponential smoothing models are based on the 
updating, for each period, of up to three parameters: 
mean level (simple smoothing model), mean level and 
trend (Holt model), mean level, trend and seasonality 
(HW model). These models are also known in the 
literature as one, two and three parameter exponential 
smoothing respectively. For the last one several 
variations can be considered whether the trend and 
seasonality are additive or multiplicative in the model 
and also there are studies that refer an increase in the 
accuracy of the method when the projected trend can be 
damped [6]. The HW method with multiplicative 
seasonality has been widely used [7]-[8]. For short term 
load forecast applications, the double seasonal method, 
developed to forecast time series with two seasonal 
cycles is well suited. In this case there is a shorter cycle 
of 24 hours and a longer one of 168.  The application 
requires an extension of the standard HW exponential 
smoothing formulation to accommodate the two seasonal 
cycles in the electricity demand series. This involves the 
introduction of an additional seasonal index and an extra 
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smoothing equation for the new seasonal index [8]. The 
formulation for double multiplicative seasonality and 
additive damped trend is given in the following 
expressions: 
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Where, nt and bt are the smoothed level and trend; Dt and 
Wt are the daily and weekly seasonal indices, respectively; 
α, β, γ, δ are the smoothing parameters; and yt+k is the k 
step ahead forecast made from origin t. The parameter φ 
stands for the damped tend meaning that if 0 < φ < 1 the 
trend is damped and the term involving parameter λ, in the 
forecast function expression (5), is an adjustment for the 
first order autocorrelation error. S1=24 and S2=168 are the 
seasonal cycles size and m1 and m2 are the number of 
corresponding cycles in the k-ahead prediction. 
The objective is to find the best exponential smoothing 
parameters. The forecasting model having the lowest error 
over a period of time is most desirable so the objective is 
to select the values of the smoothing parameters associated 
with the lowest prediction error. The error measure usually 
used is the sum of squared errors (SSE) or the mean square 
error (MSE) or its root (RMSE). Other measures of error 
are the mean absolute error (MAD) or the mean absolute 
percentage error (MAPE). Anyway, for the objective 
function, an error function or a convex combination of 
error functions can be selected and the optimal values of 
the smoothing parameters can be obtained solving the 
following non-linear problem: 
 

Min  Ε (α, β, γ, δ, φ, λ) 
s.t.   (α, β, γ, δ, φ, λ) E Ω 

 
Where Ε (α, β, γ, δ, φ, λ) is the selected error function and 
the feasible region Ω is determined by the 4xmxp recursive 
equations (1)-(4) where m is the number of weeks used to 
fit the model, p is the number of hours within a week, 168, 
and twelve boundary constraints for α, β, γ, δ, φ, λ. 
Implementation of the 4xmxp equality equations using a 
spreadsheet enables these expressions to be handled, 
associating each period with one of the rows of the active 
spreadsheet [9].  

2.1 Model Estimation, Selection and Prediction  
 

The parameters in the HW model with double seasonality 
and damped trend can be obtained by minimizing the 
one-step-ahead sum of squared errors, equation (6). 
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Where n is the number of observations in the series, ty  

the demand value for period t and tŷ  the corresponding 
forecast. This objective function is hard to compute if too 
many data is used. The one-step-ahead forecast tŷ  is 
computed using equation (5) and the four components of 
the HW model (level, trend, daily and weekly 
seasonality) that are updated recursively using equations 
(1)-(4) for fixed values of α, β, γ, δ, φ . 

 The problem constrains are only the twelve boundary 
constrains representing the maximum and minimum 
values of the six parameters to optimize, since all 
equality constraints are evaluated as elements of the 
objective function. The problem can be formulated as 
follows: 
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The objective is thus to find the combination of 
parameters α, β, γ, δ, φ, λ that minimizes SSE. The four 
components of the HW model (nt, bt, Dt, and Wt) are 
updated recursively so it is necessary to estimate the 
corresponding initial values.  
After computing the initial values the forecasting 
parameters can be calculated with an appropriate 
optimization algorithm.The model is then tested for 
prediction intervals for k periods ahead. For the tests the 
MAPE as well as the MSE are estimated. 
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Where m is the number of periods ahead tested. 

 
3. Combinatorial Optimization 
 
As mentioned, the optimal combination of parameters 
α, β, γ, δ, φ, λ is going to be obtained by metaheuristics. 
Metaheuristics are applied to problems for which there is 
no satisfactory solving algorithm or when it is not 
practical to implement the solving algorithm. 
Metaheuristics are procedures based on exploring the 
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search spaces. Metaheuristics can be seen as a frame work 
that can be applied to different optimization problems with 
relatively few changes in adapting to a specific problem 
[10]. Attractive features of metaheuristic algorithms are 
simplicity, robustness and flexibility. Also, they allow the 
incorporation of strategies to make more effective solving 
procedures. Metaheuristic algorithms have parameters to 
control the search, which have to be carefully tuned to 
obtain good performance. Hence, the adaptive control 
mechanism of such parameters has to be tested and it is an 
important task for success.  
First we need to have a good evaluation function and 
sometimes the objective function is a good choice. Then, 
we need to represent the search space, which is the set of 
solutions that may potentially be visited by the algorithm. 
The metaheuristic algorithms are based on the iteration of 
the following two steps:  

Step 1. Generate initial solutions u; 
Step 2. Improve u by using local search (LS). 
 

3.1 Model Estimation, Selection and Prediction  
 

One way to search for good solutions is to start from any 
solution, evaluate its neighbors, move to the best neighbor, 
and keep doing this until a good solution is found. This 
search method is called Hill climber (HC) or local 
improved procedure [11] and its algorithm can be 
described as follows: 
 
Step 1 Start from an initial random solution u and evaluate 

it by calculating  f (u); 
Step 2  Define some neighbor solutions set N (u) and 

evaluate those solutions; 
Step 3 Move to the best neighbor, while a stopping 

criterion is not met go to step 2. 
 
The disadvantage with hill climber is that: if the objective 
function is not a convex one, then there is no guarantee of 
being close to the optimum when in a local optimum. Also, 
if there is more than one local optimum, the local solution 
found depends on the algorithm starting initial solution. 
 
3.2 Simulated Annealing (SA) 
 
To escape local optima the simulated annealing algorithm 
(SA) follows decisions on choosing a neighbor that 
depends on a probability function that varies with the 
neighbors’ relative performance [9]. The acceptance 
probability is controlled by a parameter T called 
temperature. The value of parameter T is important. For 
instances, with large T the process is nearly random, with 
small T the process is nearly greedy.  
The SA algorithm varies T along the optimization process, 
whose idea stems from the physical annealing process 
[11]. Temperature T is usually set to large (i.e., the 
probability of moving to a worse solution is high) in the 
beginning of the search. T is then gradually decreased as 
the search proceeds. To vary the temperature T the 
following exponentially decreasing function can be used. 

RteTtT −
= max)(  (9) 

 
Where, R is the temperature decreasing rate and Tmax, the 
initial temperature and t represents time and can be 
implemented with an iteration counter. The SA algorithm 
can be stated as follows: 
 
Step 1 Initialize, t = 0 and T = Tmax; Choose a solution 

(at random) say u; Evaluate the solution by 
calculating f(u); 

Step 2 Find (at random) a neighbor solution v and 
evaluate it by calculating f(v); 

Step 3  Compute
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Step 4  Accept the new solution v with probability p;  
 Make t = t + 1; Set T = T(t);  

   
 if T > Tmin go to Step 2 otherwise stop. 
 
3.3 Evolutionary Algorithms, Genetic Algorithms (GA)  

 
The algorithms presented above are local search 
algorithms; these algorithms search by moving from one 
solution into one of its neighbors. The evolutionary 
algorithms are different. They explore the space with a 
set (population) of solutions at the same time.  The 
evolutionary algorithms manage the survival of a set of 
solutions based on the principles of natural selection.  
Evolution takes place in time as the fittest get a chance to 
combine their genes and contribute to the next 
generation. At the beginning of a GA, representations for 
possible solutions, which are often called chromosomes 
or individuals, must be developed. Different 
combinations of genes form different chromosomes. 
Each chromosome is a possible solution of the problem. 
The set of chromosomes is called the population of the 
generation. Chromosomes in a generation are forced to 
evolve toward the next generation by three basic GA 
operators, reproduction, crossover and mutation [12]. A 
GA can be stated as follows: 
 
Step 1  Make t = 0; Initialize a population of solutions 

P(0), at random and evaluate; 
Step 2 t = t+1;  
Step 3   Select the fittest from P(t-1) to built P(t); 
Step 4   Cross P(t); 
Step 5   Mutate some solution from P(t); 
Step 6 Evaluate P(t); Go to step 2 or stop if close to  

saturation. 
 
3.4 Evolutionary Algorithms, Particle Swarm (PS)  
 
The particle swarm algorithm is also a good method to 
solve this problem in the real-number space [13]. Each 
particle represents a solution point. The position of each 
particle i is assigned by vector xi. Change of position of a 
particle is addressed as velocity vi which represents a 
vector of numbers that are added to the position 
coordinates in order to move the particle from one step to 
another.   
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xi(t)=xi(t-1)+vi(t)                                                (10) 

 
The direction of movement of each particle is a function of 
current position and velocity, the location of the 
individual’s best position found and the best neighbor’s 
position. So the formula for changing velocity is the 
following: 
 

vi(t)=vi(t-1)+ ϕ1(pi-xi(t-1))+ϕ2(pg-xi(t-1))               (11) 
 
where pi is the best state found so far and  pg is the 
neighborhood best. The ϕ variables are random numbers. 
The algorithm for particle swarm in continuous numbers 
can be as follows: 
 
Step 1  Make t = 0; Initialize a population of solutions 

xi(1)(particles positions), at random and evaluate 
them; Set randomly the first value for velocity; 
Make pi=xi(1); 

Step 2 t = t+1;  
Step 3 Select the fittest pg from x(t-1); 
Step 4 Choose randomly values for  ϕ1 , ϕ2; 
Step 5 Update velocity vi(t) of each particle  
           vi(t)=vi(t-1)+ ϕ1(pi-xi(t-1))+ϕ2(pg-xi(t-1)); 
Step 6  If vi(t)> Vmax then vi(t)=Vmax else if vi(t)<-Vmax then 

vi(t)=-Vmax ; 
Step7 Update particles’ positions. xi(t)=xi(t-1)+vi(t). 

Evaluate new positions and update pi; 
Step 8 Go to step 2 or stop if close to saturation. 
 
 
4. Implementation Issues for the Case Study 
 
For obtaining the optimal parameters for HW double 
seasonal smoothing forecasting equation using the 
previous described methods the following measures were 
taken: 
The evaluation function was the objective function though 
it has the drawback of being highly time consuming to 
perform a solution’s evaluation there wasn´t any other 
good alternative. 
The first solution or the first population of solutions was 
random with Uniform distribution between [0, 1] for each 
of the six parameters that constitute a solution 
x(α, β, γ, δ, φ, λ). 
The neighbor solutions were obtained for each element of 
current solution by, ni=xi+N(0,0.1), where N(0,0.1) is a 
random observation of a normal distribution with mean 0 
and standard deviation of 0.1, and the neighbor solution is 
feasible (all parameters remain within the boundary 
constraints). 
For the simulating annealing implementation the choosing 
of parameters Tmax and R were made by a trial and error 
process. The values Tmax=20000 and R=0.05, performed 
reasonably. The probability of changing to a worst 
neighbor was set to 0.7. 
For the GA many population sizes were tested between 20 
to 100 different solutions. The selection of the fittest 
solutions was performed by a random tournament between 

solutions. The crossover was performed randomly 
between any two of best fitted solutions by combining 
randomly selected parameters of the parent solutions.  
For each offspring there are 64 different possible 
combinations of the two parents’ genes.  
The use of real variables as described above showed a 
quick saturation of population so the use of binary code 
was also implemented. For using binary code each 
parameter was set to have a 10-3 accuracy so ten bits were 
necessary for each parameter representation so a solution 
is composed by 60 bits which gives 260 different possible 
solutions less 246 (values that are unfeasible), makes 
1,1x1018 different solutions. And the problem can then be 
considered a NP hard adding the fact that an evaluation 
of the objective function is highly time consuming.  
For the particle swarm algorithm implementation, 
populations between 10 and 100 particles were tested. 
The Vmax parameter was set at 0.5 (values from 0.2 to 0.8 
were tested). The control parameters ϕ, were random 
U(0, 0.2). The neighborhood topology considered was the 
interaction of individuals with the best performing 
individual in the population. 
 
5. Results 

 
To evaluate the forecasting performance, the Portuguese 
electricity demand, REN, from 3/01/05 to 31/03/07 was 
used for testing and evaluation. The first 107 weeks data 
were used to estimate the parameters and the remaining 9 
weeks to evaluate post-sample accuracy of forecasts up to 
24 hours ahead. Figures 1 and 2 show the performance of 
some of the algorithms in term of the paths taken towards 
the best solutions obtained. The algorithms were 
implemented in MATLAB.  
 

 

Fig. 1. Evolution of evaluation function for the simulated 
annealing algorithm.
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 Fig. 2. Evolution of evaluation function for the PS algorithm 
 
The values of the parameters obtained from each algorithm 
are summarized in Table I. The solutions do not differ 
much what may indicate that the problem could be convex. 
The best solutions (those with the smallest MSE) were 
then used for testing. 
 

Table I. Parameters values obtained with each algorithm 
 

 α β γ δ φ λ MSE 

HC 0.33874 0.88411 0.48434 0.0003 0.41878 0.47991 5921 

SA 0.35593 0.71944 0.47638 0.08282 0.37245 0.50514 5941 

GA 0.36181 0.62915 0.49587 0.00013 0.36439 0.5250 5952 

GA(bin) 0.3680 0.770 0.5150 0.0580 0.4080 0.5050 5946 

PS 0.32119 1.0 0.46712 0.00130 0.44381 0.46747 5918 

Solver 0.31204 1.0 0.44155 0.08463 0.45908 0.49953 5879 

 
 

 
 
Fig. 3. Evaluation tests for the results obtained with hill climber 
algorithm for the day-ahead demand forecast. 
 

 
 
Fig. 4. Evaluation tests for the results obtained with hill climber 
algorithm for the day-ahead demand forecast. 
 
The post sample forecasting performance was evaluated 
with the parameters obtained from the various 
algorithms. Figures 3 and 4 show the results obtained 
with the parameters optimized by the HC and PS. A 
comparison between the real and forecasted values is 
performed for the 70 days used for testing. 
The best and worst days’ forecast are showed in the 
graphics. A summary of each method performance is also 
showed by averaging the MAPE across the 24 hourly 
lead times. The resulting mean MAPE values are also 
presented in Figures 3 and 4.  
With the parameters obtained with the PS algorithm the 
post sample forecasting performance was also tested for 
48 hours-ahead and 168 hours-ahead forecasts. The 
results for the best and worst predictions were showed in 
Figures 5 and 6.  
As we can see, the mean MAPE for the overall period 
increases a little (from 2.5% to 4 %) as its values are 
bigger (5% to 6%) as the lead time increases in the 
predictions of more than 48 hours ahead. 
 

 
Fig. 5. Evaluation tests for the results obtained with PS for the 
two days-ahead demand forecast. 
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Fig. 6. Evaluation tests for the results obtained with PS for the 
week-ahead demand forecast. 
 
6. Conclusions 

 
On line short term electricity demand forecasting requires 
a robust procedure. The robustness of exponential 
smoothing methods and in special the HW with double 
seasonality prove to be a good candidate for short-term 
demand forecast.  
The computing of the optimal parameters of the 
forecasting equation is an important issue for the accuracy 
of the forecast. Using an evolutionary approach to get the 
best parameters is a quick and simple method considering 
the enormous number of possible combinations for the 
parameters’ values.  
The values obtained for the forecasting equation´s 
parameters using different metaheuristic algorithms were 
similar as well as the post sample forecasting performance 
which indicates that the objective function might be 
convex.  
The HC algorithm, for its simplicity, is a good solution to 
adopt. The same parameters obtained could also be used to 
forecast up to 48 hours ahead or even a week if necessary. 
Although the errors increase when the forecasting period 
increases, when there are no weather data available this 
univariate method for short-term load forecast could also 
be a useful tool for weakly planning and scheduling of 
power systems supply. 
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