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Abstract Power quality monitoring requires knowing
when the start of the perturbation takes place, and also
when it ends; in this way, the voltage or current signals are
divided into segments. In this work, we follow previously
developed ideas in the literature and resort to parametric
modelling to achieve the perturbed signal segmentation.
What we propose here is the use of adaptive AR modelling
identification, in particular Recursive Least Squares and
Least Mean Squares, as opposed to a block-based approach
used elsewhere. Overdetermined systems, both block-wise
and adaptively are also included among the analysed meth-
ods. Simulations show that although being computation-
ally lighter, and hence more suitable to real-time implemen-
tations, segments limits are accurately located by adaptive
algorithms most of the cases.
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1. Introduction

A healthy power system can be identified, among other
facts, by the quality of the power that it is delivering.
Any deviation of the rated voltage, either in rms value
or frequency, for instance, is termed as a perturbation.
Power perturbations affect both the power grid itself
and the loads connected to it, so a proper monitoring

of the delivered power is crucial, specially the detection
of a perturbation at the same instant that it appears.
This operation must be carried out in real time, allow-
ing allocating more computational resources to identi-
fying and characterising in proper detail this pertur-
bation, and eventually applying the healing measures
that may be required. In order to achieve this seg-
mentation of the voltage or current signals into healthy
and unhealthy segments, signal processing methods are
applied [1, 2]. In particular, an autorregresive (AR)
parametric model is fitted to the signal of interest dur-
ing a given block of samples, so the modelling error is
small. If the same model is applied to the next block
of samples, two things can come out. First, the signal
behaviour has not changed, so the model is still valid
and the modelling error is small. Second, the signal be-
haviour has deviated from the previous block, so the
model error increases. This increment can be used to
detect this change in behaviour, either the perturba-
tion start, end or change.

The block-wise approach is required here, since some
kind of adaptivity is necessary —i.e. as new sam-
ples arrive, the algorithm is able to provide new in-
formation. Nevertheless, it may not be the best adap-
tive approach, since it is computationally demanding,
since basically each block is solved without consider-
ing any previous knowledge that could have been com-
puted in any previous block. In this sense, it is very
interesting to consider other kinds of adaptivity im-
plementations. One of such implementations is found
when the signal is recursively fitted to the AR model
through least-squares, using the so called Recursive
Least Squares (RLS) algorithm. Although not for seg-
mentation, RLS algorithms have been previously used
in the power quality context. In [3], a novel RLS type
algorithm is compared against other RLS and LMS
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algorithms when applied to harmonic parameters esti-
mation. Likewise, in [4] a similar analysis is carried out
but for a limited number of algorithms. Another fea-
sible adaptive implementation to solve the segmenta-
tion problem is based on finding the least mean square
(LMS) of the modelling error, via the so called LMS
algorithm. Compared to RLS algorithms, LMS algo-
rithms are computationally lighter, so in this sense, are
better candidates for real-time implementation, and
hence are worth considering. LMS algorithms were
analysed by the authors previously [5], but not com-
pared to any other pure adaptive algorithm, like the
RLS here. Finally, due to the estimation process inher-
ent in this kind of problems, where in some cases sta-
tistical magnitudes are computed from time averages
of signal samples assuming ergodicity [6], considering
more equations than model order parameters —that
are the unknowns in this problem— is likely to yield
more accurate results. Based on this idea, overdeter-
mined implementations of the methods discussed in the
previous paragraphs are also considered.

2. Solving parametric models

Parametric models are those which definition depends
only on the value of a certain number of parame-
ters. One of the most general one is the autoregres-
sive moving-average (ARMA), but here we concentrate
only on its AR part, so a signal y(n) follows an AR
model if

y(n) =−
p

∑
i=1

aiy(n− i)+w(n) (1)

where {ai}p
i=1 are the model parameters and {w(n)} is

an independent and identically distributed zero mean
process (noise). If both sides of (1) are multiplied by
y(n− k) and then the expected value operator E[·] is
applied, the Yule-Walker equations are obtained:

E[y(n)y(n− k)] =−
p

∑
i=1

aiE[y(n− i)y(n− k)]. (2)

These expected values for different k and i constitute
the autocorrelation sequence of process y(n). Assuming
ergodicity, they can be estimated by sample averaging,
so (2), including estimated expected values, provides
estimated values of the model parameters, {âi}. For
the application in mind, one would expect that a good
model fit would result in a small w(n) in (1).

A. Adaptive algorithms

An adaptive approach to a problem resolution serves
two main purposes. First one, at the arrival of new in-
formation —i.e. new data— update the result. Second

one, track the time evolution of the system, contin-
uously updating the gathered information and hence
the result. The second one is of interest here. A well
known and simple adaptive algorithm is the LMS. This
algorithm can impose an orthogonality condition be-
tween a vector of data x(n) and the estimation error
e(n), that is E[x(n)e(n)] = 0 [7]. Remarkably, defin-
ing x(n) =−[y(n−1),y(n−1), ...y(n−N)]T , d(n) = y(n)
and e(n) = d(n)− aT x(n), the Yule-Walker equation
(2) shows up. LMS can then be used to estimate
the AR parameters vector a = [a1,a2, ...,ap]

T. Further,
e(n) = w(n).

Since the orthogonality condition arises from the mini-
mization of error signal e(n), any other algorithm that
minimises it would solve the YW equations provided
the variables are defined as in the previous paragraph.
One option is to follow a least-squares approach, like
the Recursive Least Squares (RLS) algorithm, [7].

B. Overdetermined algorithms

Provided that the problem at hand is an estimation
one, it could seem reasonable to include as many equa-
tions as possible in order to improve the process. YW
equations are a set of linear equations described in (2),
for k = 1, ..., p. But an overdetermined system can be
obtained if k takes longer values, say up to 2p. Such an
overdetermined system can be solved using the pseu-
doinverse of the linear system matrix. Adaptive imple-
mentations are also possible for overdetermined sys-
tems. An extension of the RLS algorithm to this case
is the Overdetermined Recursive Instrumental Variable
(ORIV) algorithm. Likewise, for LMS the Averaged
Overdetermined and Generalised LMS (AOGLMS) is
available [8].

3. Examples and simulations

In order to illustrate and later compare the described
approaches to compute AR models, four different
power quality perturbations will be considered:

P1.- An 0.8 pu voltage sag.

P2.- An 0.8 pu voltage sag, with two step recovery.

P3.- A 1.2 pu voltage swell.

P4.- Voltage transient, following section 8.10.1.1 of [1].

Perturbations are computer generated, assuming a
sampling frequency of 6.4 kHz and a duration of 1792
samples. Small Gaussian noise is added, at 25 dB SNR.
Performances of these methods under P1–P4 perturba-
tions follow.
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Fig. 1– Error signal from YW equations, solved block-wise.
Best parameter combination shown: p = 15, Bl = 200 and
ovl = 50%.

A. Sudden change caused by a voltage sag

The synthetic sag starts at sample 598, and finishes at
1195. At these limiting points, voltages changes from
−0.86 pu to −0.18 pu and from 0.18 pu to 0.86 pu,
respectively. So, the perturbation is easily locally lo-
cated. By locally, we mean that from a short observa-
tion window, it can be said that something is changing
in the signal, and hence the described methods will
have no real problem.

Let us first consider the error signals provided by the
YW equations solved block-wise, obtained for a range
of model orders, block lengths Bl and overlapping ovl.
Peaks are nicely well defined (a line in fact) with no
significant difference in heights, while base error oscil-
lates for lower block lengths. Best results —i.e. higher
peaks— are obtained for higher model orders, longer
lengths and overlapping, see figure 1. When an overde-
termined system is formed using the YW equations,
irregular behaviour of e(n) producing some huge peaks
for some parameters combination happens. Can this
irregularity be caused by the computation of the pseu-
doinverse? Peak location is quite accurate, within a
range of 3–4 samples at the most. Best performance is
shown in figure 2.

Applying the LMS formalism to the YW equations re-
sults in smooth and regular e(n). Some analysed pa-
rameter combinations make the algorithm diverge, so
a study to determine the valid parameters range is re-
quired, in particular that of the step-size µ. Disregard-
ing the initial converge samples, the rest of combina-
tions —the non-diverging ones— provide good results:
perfect first and second peak location, being µ = 0.05
the best option, with little difference for p = 5,10,15
(see figure 3). Regarding an overdetermined LMS ap-
proach to YW equations, it brings more diverging pa-
rameter combinations, being e(n) oscillatory during

Fig. 2– Error signal from overdetermined YW equations,
solved block-wise. Best parameter combination shown: p=
5, Bl = 200 and ovl = 25%. Note the difference in scale
compared to figure 1.

Fig. 3– Error signal from YW equations, adaptively solved
(LMS). Best parameter combination shown: p = 15, µ =

0.05.

convergence and base level. As figure 4 shows, com-
pared to figure 3, convergence is slower, but provides
higher peaks than non-overdetermined LMS. When the
ORIV algorithm is employed, all analysed parameters
combinations exactly locate the start and end of the
sag. Nevertheless, higher peaks are provided by p = 5
and forgetting factor λ=0.99, while best defined peaks
by p = 10 and λ = 0.99, please refer to figure 5. Fi-
nally, for the RLS algorithm an excellent definition is
achieved, with low smooth base level and sharp, cor-
rectly located, peaks, for all parameters combinations
(see figure 6). In order to allow a better comparison
of the presented algorithmic results so far, in table I,
the location of the peak and its height is presented
for each case. Recall that for adaptive algorithms, the
initial samples of signal e(n) are not considered since
the algorithms have not fully converged yet. As clearly
seen, the overdetermined block-wise approach is the al-
gorithm that show a more distinctive behaviour since,
unlike the rest of algorithms the estimated peaks are
slighted (4 samples) deviated from the exact location,
but the heights are well above the rest. Aside this par-
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Fig. 4– Error signal from overdetermined YW equa-
tions, adaptively solved (LMS). Best parameter combina-
tion shown: p = 15, µ = 0.15, f = 0.94.

Fig. 5– Error signal from overdetermined YW equations,
adaptively solved (ORIV). Best parameter combination
shown: p = 15, λ = 0.99.

ticular case, the overdetermined LMS algorithm pro-
vides the best results of all studied cases, since the
peak location is exact and the peaks are the highest.

B. Soft change in a (two step) voltage sag

The second perturbation that was considered was a
two step sag, where the first sag is 0.8 pu, as in the
previous example, but then the sag is fully recover just
after going through a lesser (0.4 pu) gap. Under this
situation, one may expect an identical behaviour to the
previous example in what respect the identification of
the beginning of the sag, but surprisingly, it is not so.
Only a few methods do the work:

a) Block-wise approach: only larger p with longer
block lengths are able to correctly locate the three
transition points, and it should be noted that the
peaks are 10 times lower than for the single step
sag case, and hence the difficulty in a correct de-
tection.

Fig. 6– Error signal from YW equations, adaptively solved
(RLS). Best parameter combination: p = 15, λ = 0.99.

Table I– Peaks location (in samples) and heights obtained
during the segmentation of the sag, for all the analysed
approaches. Exact peak location, 598 and 1195 samples
respectively for peak 1 and 2.

Method peak 1 height 1 peak 2 height 2
Block-wise 598 0.689 1195 0.685

Overdetermin 599 4.04 1199 2.47ed block-wise
LMS 598 0.485 1195 0.664

Overdeterm 598 0.762 1195 0.689ined LMS
ORIV 598 0.645 1195 0.636
RLS 598 0.664 1195 0.646

b) LMS approach: the error signal e(n) has a regular
behaviour, but again the peaks are quite small.

c) RLS approach: as for the one step sag, excellent
peak definition, although being smaller. Never-
theless, it carries a small delay of 4 samples.

The reason behind the small peaks is that although
the first step decreases in 0.8 pu (like in the simple one
step sag) the signal is smoother since the step hap-
pens to be in a zero crossing. So, smooth transitions
require longer model order and block lengths, so that
the scope is widen and changes are spotted. For a fair
comparison, all three working methods are shown in
figure 7. From it, it is clear that best behaviour is
shown by the RLS algorithm, since it is smooth with
sharp peaks, followed by the LMS algorithm; finally,
the standard block-wise approach provides the poor-
est result. Overall, note that the peaks are now much
shorter, compared with the one step sag analysed in
section 3.A.

C. Other perturbations

Besides sags, a voltage swell has also been considered.
In this case, the amplitude jumps from 1 pu to 1.8
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Fig. 7– Error signal for three different approaches: block-
wise, for p = 15, Bl = 200 and ovl = 25, black; LMS, for
p = 10, µ = 0.15, blue; and RLS, for p = 15, λ = 0.99, green.

pu , i.e. an 0.8 pu increment in a similar fashion of
the 0.8 pu decrement for sags, although this value may
not be very realistic. In general, the behaviour of the
analysed method does not differ much from that shown
for one step voltage sag, except for a couple of situa-
tions. First, the overdetermined block-wise approach
produces a much more regular pattern. Second, some
values of the parameters that control the convergence
now make the algorithm diverge, when it was not the
case for sags; this is due to the increment in signal
magnitude, which requires lower values for step-sizes.

Regarding transients, it has to be considered that AR
modelling triggers higher error at perturbation bound-
aries when these perturbations are a change from a
sinusoidal waveform to a sinusoidal waveform, like in
a sag or swell (not in a transient). Also, if the dif-
ference between perturbed and unperturbed signal is
small, the algorithm will find it difficult to spot. So, for
transients, the analysis of the methods indicates that:

a) The peaks are smaller than for the rest of analysed
perturbations.

b) During the transient, errors are above base level.

c) Higher error does not necessary occur at transient
boundaries.

D. IEEE 1159.2 Working Group Test Waveforms

In order to further compare the studied algorithms,
test waveform 3a provided by the IEEE 1159.2 Work-
ing Group is considered (see figure 8). These test wave-
forms stress the influence of electronic equipment in in-
dustries, and as opposed to the synthetically generated

Fig. 8– Test waveform number 3 from IEEE 1159.2 working
group.

Fig. 9– Error signal of ORIV algorithm for test waveform
3a.

used previously, they show a more irregular behaviour,
not only due to sags. The irregularities make the mod-
elling process more challenging, so the modelling er-
rors are continuously varying and peaks —indicating
a sudden change in behaviour, leading to start/end of
events— are more difficult to identify. This fact has
even led to AR models unable to detect the power qual-
ity event if during the event itself a pattern of any kind
is not followed, like it was the case for test waveforms
4 and 15.

Simulations have shown that the ORIV algorithm is
the best adaptive algorithm for this particular signal
(figure 9), and that in general, overdetermined imple-
mentations provide better results. Regarding the com-
parison against its LMS counterpart, from figure 10 it
can be deduced that the latter never achieve a con-
stant error, due to longer converging times coupled
with more dynamically active voltage signal (figure 8).
An overall idea of the performance of all the analysed

methods can be obtained from table II. Now, from
an inspection of figure 8, peaks should appear at sam-
ples 333 and 1204, where different events seem to start.
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Fig. 10– Error signal of overdetermined LMS algorithm for
test waveform 3a.

Table II– Peaks location (in samples) and heights obtained
during the segmentation of test waveform 3a.

Method peak 1 height 1 peak 2 height 2
Block-wise 337 0.127 1214 0.072

Overdetermin 342 2.26 1212 1.08ed block-wise
LMS 342 0.189 1213 0.212

Overdeterm 337 0.147 1214 0.211ined LMS
ORIV 342 0.225 1220 0.192
RLS 336 0.065 1207 0.033

RLS algorithm provides more accurate peak locations,
but the error signal it provides is far more difficult to
interpret due to much lower peaks.

E. Analysis

The perturbations should be classified according to the
gap happening at the boundaries of the synthetic sig-
nal used. In this work, when the jump at the boundary
point is 0.68 pu, the jump is considered of sufficient en-
tity to be easily resolved by all the studied methods.
For this case, the AOGLMS algorithm provides best
results, although overdetermined block-wise shows a
singular behaviour. On the other hand, if the gap at
the perturbation boundary is negligible, only certain
methods succeed — block-wise, LMS and RLS— be-
ing the RLS the best performer. It should be noticed
that the overdetermined variants do not work, maybe
because they are very able to track such a small signal
change, so the error is not affected. Regarding applica-
tion of these methods to test waveforms obtained in in-
dustrial scenarios under power electronics equipments,
analysis changes quite radically, since during the per-
turbation the voltage waveform shows a very irregular
behaviour and hence noticeable error values can oc-
cur, concealing the peak linked to the sample point of

segmentation start/end. Error signal when modelling
perturbed voltage/current during a transient should be
interpreted differently, since single isolated peaks are
no longer present, but rather, a whole interval of high
values of the error signal.

4. Conclusions

Adaptive algorithms, despite being lighter computa-
tionally, are able to correctly segment the perturbed
signal, according to simulations. Simulations also show
that the parameters that govern the algorithms must
be chosen carefully to assure convergence. Besides,
overdetermined approaches seem to behave more ir-
regularly, which translates into more sharp responses
to the start of the perturbed segment. So, adaptive
approaches are an excellent choice for real-time seg-
mentation, provided the signal of interest can be AR
modelled except during the perturbation start/end.
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