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Abstract. In recent years, the potential capability of plug-in 

electric vehicles to offset the intermittency of renewable 

generation is being analyzed widely. In power systems literature, 

these electric vehicles are often merged into an aggregator, i.e. an 

agent responsible of their charging/discharging operation. 

However, the available power from the aggregator is likewise 

subject to uncertainty. In this paper, a robust linear programming 

problem is considered to model the power system operation. In 

order to clarify the influence of the electric vehicles on the 

solution, only the available power from the electric vehicles 

aggregator is taken into account. A multiperiod case study is used 

to show the behavior of the robust optimization framework in the 

solution of a multiperiod energy management system. The role of 

the uncertainty level and different criteria to reduce the cost of 

uncertainty are also analyzed. 
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1. Introduction 

 
With the increasing awareness of environmental issues, 

there is a growing interest in the integration of renewable 

power sources to address electricity generation. Another 

advantage of the distributed energy sources is that they are 

able to deliver clean energy at the electric nodes where it 

will be consumed. However, the intermittency of these 

sources results in a relevant drawback in the real time 

operation of the power systems. 

  

One of the most promising alternatives to fight against this 

intermittent behavior is the use of electric vehicles as 

distributed generation sources, often referred to as vehicle-

to-grid (V2G). A conceptual framework of the integration 

of electric vehicles as distributed sources may be found in 

[1] and [2]. The need of an appropriate coordination 

mechanism to charge and discharge (V2G) the batteries of 

these electric vehicles are shown in [3] and [4]. From a 

power system operator point of view, it is crucial to obtain 

an accurate assessment so that the electric vehicles can aid 

to the efficiency and reliability of the system. However, a 

new uncertainty source, the power availability of the 

batteries, mainly due to the owner’s driving pattern, 

should be considered in the power system model. In [5], 

there is a congestion management model, based on the 

Point Estimate Method [6], which includes electric 

vehicles and renewable power sources. In that paper, it is 

assumed that the distribution functions of the input 

random variables are known. 

 

Robust optimization [7]-[8] is a modeling technique that 

seeks to minimize the negative impact of future events 

when the distributions of the input random variable are 

unknown. An optimal energy management of a small 

power system with renewable sources and V2G, based on 

a robust optimization approach, may be found in [9]. 

That paper includes the wind uncertainty under a multi-

scenario approach, while the uncertain power availability 

by the electric vehicles aggregator is model by adding a 

robust counterpart to the linear programming problem. A 

dispatchable generation unit is also considered. 

 

Taking only into account the uncertainty related to the 

availability of the electric vehicles to charge/discharge 

power, this paper focuses the behavior of the robust 

optimization framework in the solution of a multiperiod 

energy management system. It is assumed that the power 

system operator controls the charging/discharging 

operation of a fleet of electric vehicles that are merged 

together into an aggregator. The role of the uncertainty 

budget and the different criteria to reduce the cost of 

uncertainty are also analyzed. From a mathematical point 

of view, the energy management system is formulated as 

a robust linear programming problem, where the 

charging/discharging operation from/to the aggregators is 

incorporated to the optimization problem through a 

robust counterpart.  

 

In Section 2, the formulation of the robust linear 

programming problem is presented. In Section 3 the role 

of the uncertainty level and the different criteria to reduce
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the cost of uncertainty are also analyzed. A 24-hour case 

study to show the results is presented in Section 3. Finally, 

some conclusions are drawn in section 4. 

 

2.  Robust linear programming problem 
 

The model presented in this section is a linear 

programming robust optimization problem. In order to 

maximize the clarity of the presentation, the deterministic 

version of the model is firstly formulated in subsection A, 

and then, the details of the robust counterpart are presented 

in subsection B.  

 

The model only takes into account the uncertainty 

associated with the electric power available to charge or 

discharge at/from every aggregator in every period (hour). 

The power system network is incorporated as a linear DC 

power flow model. It is assumed that the power system 

operator controls the charge and discharge of the 

aggregator, but the commitment state of each aggregator 

(charging, discharging or idle) in every period is 

previously defined. 

 

A. Deterministic model (non-robust) 

 

The deterministic version of the problem is defined as the 

linear programming presented below: 

 

 

 

 

 

     (2.1) 

 

 

 

 

 

 

(2.2) 

 

 

 

 (2.3) 

 

 (2.4) 

 

 (2.5) 

 

 (2.6) 

 

 

 

 (2.7) 

 

 (2.8) 

 

 

The objective function to be minimized is the total cost of 

the energy management system (2.1). In that formulation, 

upper-case symbols are used to denote constants and 

parameters, while lowercase ones denote variables. The 

main variables to be determined are the output/input 

power from/to aggregators and form/to the main grid. 

Constraints (2.2) ensure the nodal power balance at every 

bus at every hour, while (2.3) is the definition of an 

auxiliary variable to include the power injected from/to 

the grid at the (only) bus connected to it. Constraints 

(2.4) include the linearized power flow equations through 

every line at every hour. Finally, constraints (2.5), (2.6), 

(2.7) and (2.8) represent the lower and upper bounds to 

the voltage angles, power from/to the grid, power flow 

through the power lines, and power from/to the 

aggregators, respectively. 

 

B. Robust counterpart 

 

The robust counterpart solution is the best uncertainty 

immunized solution that can be associated with the 

uncertain problem. The distribution functions of the 

uncertain data are assumed to be unknown, but their 

limits are assumed to be known. The goal is to be 

protected for all allowable realizations of the electric 

power available for aggregators. 

 

Since the charging/discharging (or idle) commitment 

state of the aggregators is previously defined, and the 

expected power from/to the aggregators (𝑷𝑨𝑽(𝒂, 𝒕)), i.e. 

the central point of the interval of uncertainty, is also 

known, two main different behaviors: periods in which 

they are injecting power to the power system aggregators 

(𝑷𝑨𝑽(𝒂, 𝒕) > 𝟎), and those in which they are demanding 

power from it (𝑷𝑨𝑽(𝒂, 𝒕) < 𝟎). Hence, constraint (2.8) 

may be reformulated as in (2.9)-(2.14): 

 

                                 (Vehicle to grid)  

 

 (2.9) 

 

 (2.10) 

 

 (2.11) 
 

 

(2.9-2.11) Represent the behavior of the aggregator as a 

generator. 

 

                                 (Grid to vehicle) 

 

      (2.12) 

 

 (2.13) 

 

 (2.14) 
 

 

Equations (2.9)-(2.10) and (2.12)-(2.13) represent the 

new bounds, depending on the behavior of the aggregator 

(sign of the variable 𝑝𝑎𝑔𝑔(𝑎, 𝑡)), and (2.11) and (2.14) 

include more restrictive lower and upper bounds to (2.9) 

and (2.12) respectively.    

 

Parameter 𝑷𝑨𝑽(𝒂, 𝒕) is modeled as a symmetric and 

bounded random variable that take values in the interval 

[𝑷𝑨𝑽(𝒂, 𝒕) − 𝑷̂𝑨𝑽(𝒂, 𝒕), 𝑷𝑨𝑽(𝒂, 𝒕) + 𝑷𝑨𝑽̂(𝒂, 𝒕)], with the 
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parameter 𝝈 indicating the deviation from expected value, 

i.e.  𝑷𝑨𝑽̂(𝒂, 𝒕) = 𝝈 𝑷𝑨𝑽(𝒂, 𝒕). 

 

 

 

 

 

 

 
Fig.1. Bounds and robust interval for variable 𝑃𝑎𝑔𝑔(𝑎, 𝑡). 

 

Parameters 𝜔𝐷 and  𝜔𝐺  set the lower bound to generation, 

when it is necessary for 𝑃𝐴𝑉(𝑎, 𝑡) > 0 and the upper bound 

to aggregators’ demand for 𝑃𝐴𝑉(𝑎, 𝑡) < 0. The use of these 

parameters it is showed in Fig. 1. 

 

Taking into account the duality properties and linear 

equivalences [11], the robust counterpart of the 

deterministic problem in (2.1)-(2.8) is formulated by 

equations (2.1)-(2.7), and (2.15)-(2-26). 

 

                                 (Vehicle to grid)  

 

 

 

(2.15) 

 

 

 (2.16) 

 

 

 

(2.17) 

 

 

 

 (2.18) 

 

 

                                 (Grid to vehicle)  

 

 

 

 

 (2.19) 

 

 

 (2.20) 

 

 

 

 (2.21) 

 

 

 

 (2.23) 

 

 

 Additional constraints    

 

 

 (2.24) 

 

 

 (2.25) 

 

 (2.26) 

 

Equations (2.15)-(2.16) include the robust formulation of 

the lower bound of the power generated by the 

aggregator, while (2.17)-(2.18) present the robust 

formulation of the upper bound of the power generated 

by the aggregators. The term Г(𝑎, 𝑡) 𝑧𝐺(𝑎, 𝑡) + 𝛼𝐺(𝑎, 𝑡) 

provides the necessary protection of the robust constraint 

by maintaining a gap between 𝑃𝑎𝑔𝑔(𝑎, 𝑡) and 𝑃𝐴𝑉(𝑎, 𝑡). 

Variables 𝑧𝐺(𝑎, 𝑡) and 𝛼𝐺(𝑎, 𝑡) are dual variables for each 

bound of the power generated by the aggregators. 

Auxiliary variables 𝑥(𝑎, 𝑡) are needed to formulate the 

robust problem. Accordingly, equations (2.18)-(2.19) 

include the robust formulation of the upper bound of the 

power demanded by the aggregators, while (2.20)-(2.21) 

present the robust formulation of the lower bound of the 

power demanded by the aggregators, and variables 

𝑧𝐷(𝑎, 𝑡) and 𝛼𝐷(𝑎, 𝑡) are dual variables for each bound of 

the power generated by the aggregators.  Finally, (2.24) 

and (2.25) set the non-negativity of the dual variables. 

 

It should be noted that equations (2.15)-(2.26) are set 

only for those periods in which the aggregators are either 

generating or demanding power, while in those periods in 

which they are in the idle state, variables  𝑝𝑎𝑔𝑔(𝑎, 𝑡) are 

set to zero. 

 

The parameter Г(𝒂, 𝒕) takes a value in the interval (0,1). 

The role of this parameter is to adjust the robustness of 

the proposed method against the level of conservatism of 

the solution 

 

3. The uncertainty level 
 

It is widely assumed that the robust optimization model 

presented by Soyster [10] may be too conservative. In 

2004, Bertsimas and Sim [11] formulated a robust 

optimization problem in which an adjustable parameter 

can be used to handle the trade-off between reliability 

and economy, i.e. between the robustness of a solution 

and its associated cost. That parameter is referred to as 

uncertainty level or uncertainty budget. In addition, some 

upper bounds on the probability of constraint violation 

are also provided in [11]. 

 

In this paper the role of the uncertainty level () is 

analyzed. Three different situations may be considered 

for a set of homogeneous uncertainty levels:   

 

 If Г(𝒂, 𝒕) = 𝟎 for all aggregators and periods, the 

robust counterpart problem is equivalent to the 

deterministic one, i.e. none uncertainty is considered. 

The solution of the optimization would be the 

cheapest but, since in the robust problem formulated 

there is only one random variable for each aggregator 

and period, half of the interval would be unprotected 

against the possible realizations of the random 

variable with uncertainty. 
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 If Г(𝒂, 𝒕) = 𝟏 for all aggregators and periods, it would 

be completely protected against all possible 

realizations of the uncertainties, but it would be the 

most expensive solution. It is the so-called minimum 

regret formulation. 

 

 Finally, if this parameter is homogenously fixed (i.e. 

for all aggregators and periods) to an intermediate 

value (𝟎 < Г(𝒂, 𝒕) < 𝟏), the robustness of the solution 

would be linearly decreased, but its cost would be also 

decreased accordingly. 

 

In this paper, the role of a specific set of this parameter for 

each aggregator and period is analyzed. It may be used to 

check, for instance, what would be the increase of the 

objective function if any (or several) period, or aggregator, 

is protected over (higher Г(𝒂, 𝒕)) a mean value. In order to 

show the behavior of this specific set of the uncertainty 

level, the linear programming problem in (3.1)-(3.4) is 

formulated. The main idea behind that problem is that, 

although some periods are overprotected and some others 

are under protected, the total amount of protected power is 

not modified. 

  
 (3.1) 

 

 

 

 

 

 
 (3.2) 

 

 

 

 

 
 (3.3) 

 

 

 (3.4) 

 

 

The solution (power from/to the aggregator) of three 

different case studies is considered as input data in (3.1)-

(3.4): the deterministic problem (=0), the minimum 

regret problem (=1) and the one from a intermediate but 

homogenous set of the uncertainty level (0<<1). Then, an 

adjusted uncertainty level set (adj) is to be determined.  

The total is minimized cost in the objective function (3.1). 

Constraint (3.2) enforced the total amount of protected 

power of the ‘adjusted solution’ equals the total amount of 

protected power in the intermediate but homogeneous case 

study. Since the power from/to the aggregator variable 

may be positive or negative, depending on the aggregator 

and period, the absolute value is required. Constraint (3.3) 

includes the definition of the adjusted uncertainty level set, 

and (3.4) provides the lower and upper bounds to the 

uncertainty level in every aggregator and period. It should 

be mentioned that if the adjusted uncertainty level set of 

the problem (3.1)-(3.4) is used, as input data in the robust 

counterpart presented in Section II.B, both problems reach 

the same solution. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Energy prices. 

4. Case study  
 

A 24-hour multiperiod small-size case study is used to 

test the proposed strategy. This case study only includes 

4 buses, although results presented in this section would 

be also valid to a higher power system,  as long as 

network constraints do not limit the optimal solution, as 

in the case studies analyzed. The power demand at every 

bus and period, independent of the charging/discharging 

operation of the electric vehicles, and electric energy 

prices are assumed to be deterministic. The cost of the 

energy prices for the grid and the aggregators are 

presented in Fig. 2. These multiperiod cost sets are used 

for the grid and aggregators, without differencing the 

direction of the power flow, i.e. from/to the 

grid/aggregator respectively.  

 

Two aggregators are considered: one of them is located at 

a bus with a residential load profile (a1), while the other 

is at a bus with a commercial load profile (a2). The 

uncertainty related to the available power from/to the 

aggregators is modeled by an expected value and a 

symmetric robust interval with a constant -value of 0.2.  

 

The colored bars in Fig.3 (for aggregator a1) and Fig. 4 

(for aggregator a2) show the charging/discharging power 

of each aggregator at each period. Those figures include 

the results over four different case studies: the 

deterministic one (blue), the minimum regret solution 

(red), the intermediate and homogeneous uncertainty 

level with =0.5 (cyan), and the solution corresponding 

to an adjusted set of uncertainty level according to the 

optimization problem described in section 3 (yellow).  

 

Fig. 3 shows the typical behavior of an aggregator (a1) 

with a residential load profile: following the electric 

energy prices, electric vehicles are mainly charging 

during the night periods and early afternoon, while power 

is delivered to the system mainly during late afternoon 

and early evening periods. On other hand, Fig. 3 shows 

the behavior of an aggregator (a2) located at a bus with a 
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Fig.3. Pagg for aggregator 1 for different protection levels. 

 

commercial profile: in an idle state during non-commercial 

periods and injecting power to the system mainly around 

noon. 

 

Regarding the uncertainty level, it can be observed, in both 

figures, that the deterministic solution (=0) and the 

minimum regret one (=1) reach the extreme values of the 

injected power from/to the aggregator for all periods; 

while the homogeneous solution (=0.5) and the adjusted 

one (adj) remain in intermediate values. The relative 

position of the extreme value of the deterministic solution 

and the minimum regret solution depends on the constraint 

of the robust counterpart that is active: for instance, the 

power demand of aggregator a1 (Fig.3) is the highest value, 

among the four  values, in period 24; but it is the lowest 

value in period 23. The opposite holds for the minimum 

regret solution in those two periods. It can be also seen that 

the homogeneous solution (=0.5) is the mean between the 

deterministic solution and the minimum regret one.  

 

In order to analyze the behavior of the linear programming 

problem presented in section 3, Fig 3. shows that the 

power demand of adjusted solution is close to the 

deterministic solution in period 23, when the price of the 

power from the grid is higher than the power from the 

aggregator, while the power demand of adjusted solution is 

close to the minimum regret solution in period 24, when 

the price of the power from the grid is lower than the 

power from the aggregator.  

 

Regarding the power generated by the aggregator, it can be 

observed in Fig. 3 that the power generated by aggregator 

a1 is close to the deterministic solution in most periods 

from 9 to 22, when the price of the power from the grid is 

higher than the power from the aggregator, but not in 

periods 15 and 16, where the solution is close to the 

minimum regret one. This is due to the fact that the other 

aggregator, a2 in Fig. 4, is demanding power in those 

periods, and hence, the result is the joined effect of both 

aggregators.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.4. Pagg for aggregator 2 for different protection levels. 

 

In Fig. 5 the power balance of the power system and the 

main grid is displayed for each period. The power 

system is demanding power from the grid in all periods 

but in period 13. In that period, the power generated by 

the aggregators is high enough to invert the direction of 

power and, then, the system is injecting power to the 

grid; but this is true only in three of the four case studies 

analyzed: in the solution of the minimum regret problem, 

the power generated by the aggregators is not high 

enough and the power system demands power from the 

grid. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.5. Power from/to main grid for different protection level. 

 
 

The behavior of constraint (3.2) is shown in Fig. 6: the 

left-hand side of that equality constraint (red) and its 

right-hand side (black) are depicted for three different 

values of the uncertainty level parameter (0.25, 0.5 and 

0.75). In may be observed that in some periods the 

protected power in the adjusted solution (red) is higher 

than the protected power in the homogenous solution 

(black), while it is the opposite in other periods, but the 

total amount of protected power is the same in both 

solutions. 
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Fig.6. Protection level of the adjusted solution (red) and the  

homogenous solution (black). 

 

The objective functions of the case studies analysed are 

shown in Fig. 7. The two extreme points correspond to the 

deterministic solution (=0) and the minimum regret one 

(=1), and the linear function joining them (black) 

represents the evolution of the objective function of 

problem formulated with an  homogeneous uncertainty 

level. It can be seen that the cost of the adjusted solution 

(red) is lower than the one from the homogeneous one. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7. Trend of the optimal object function. 

 

All the optimization problems were solved using GAMS 

24.1.3 [13] on a PC with an Intel Core i5 processor and 8 

GB of RAM in a few seconds. 

 

5.  Conclusions 
 

This paper presents an energy management system 

formulated as a robust linear programming problem. The 

only source of uncertainty taken into account is the power 

availability of the electric vehicles merged into some 

aggregators. The charging/discharging operation is 

assumed to be controlled by the power system operator. 

The most conservative solution and the deterministic one, 

where the uncertainty is neglected, are compared against 

some parametrized solutions for different sets of 

uncertainty levels. A linear programming problem is 

developed to find out a solution in which the cost of the 

solution obtained with an adjusted set of uncertainty 

level, for each aggregator an period, is lower than the 

cost of the problem formulated with a homogeneous 

value of the uncertainty level with the same total amount 

of protected power. Results over a multiperiod case study 

are presented to show the effectiveness of the proposed 

procedure.  
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