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Abstract. We describe quantitatively effects of nonlinear transfer 
phenomena that drive energy generators (thermal engines) and heat 
pumps. it is shown that these transports can be treated either in a 
standard way or as peculiar chemical reactions described by 
appropriate affinities. An approach to nonlinear transports links heat 
fluxes with differences of temperature in certain power ta. a more 
recent approach distinguishes in each elementary transfer step two 
competitive (unidirectional) fluxes and the resulting flux as their 
difference. we show how the kinetics of this sort can be implemented 
into the contemporary theory of thermal energy generators. 
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1. Introduction 

 
In this work basic rules in modeling the energy limits and 
efficiency drop caused by finite rates of real processes in the 
system are discussed. In particular, radiation engines are 
analyzed as important systems governed by nonlinear laws of 
thermodynamics and transport. A general formula linking a 
converter’s efficiency with the cumulative power and entropy 
production is applied to estimate an irreversible limit for 
power yield and to define a finite-rate extension of the 
classical work potential. The real work is the cumulative 
effect obtained from a resource fluid at flow, a set of 
sequentially arranged engines, and an infinite bath. The use of 
optimal control methods, such as maximum principles and 
dynamic programming, leads to a finite-rate generalization of 
the classical available energy. 
 
In this research, the energy limits for imperfect cycles 
producing or consuming mechanical energy are investigated 
in the framework of finite time thermodynamics by taking the 
maximum power as the objective. Since the heat transfer law 
has a strong effect on the performance of the cycle an 
approach is pursued that aspires to derive a relatively large 
number of basic equations in the form independent on the 
mode of energy transfer between the circulating fluid and 
reservoirs. In the nonlinear modeling that is methodological 
extension of that known for the linear case the heat transfer is 
assumed to obey the power law Ta (heat flux proportional to 
the difference in Ta) instead of Newton’s linear law. A more 

recent approach is also briefly considered in which one 
distinguishes in each elementary transfer process two 
competitive (unidirectional) fluxes and the resulting flux 
being their difference. The unidirectional fluxes are equal in 
the thermodynamic equilibrium and their difference off the 
equilibrium constitutes the observed flux representing the 
resulting rate of the process. In this approach nonlinear 
resistance and of a related affinity play important role. In most 
general situation when the mass transfer is included the non-
equilibrium transports are described by equations containing 
exponential terms with respect to chemical potentials of 
Planck and temperature reciprocal, that simultaneously are 
analytical expressions characterizing the transport of the 
substance or energy by the energy barrier. We show how the 
kinetics of this sort can be implemented into the contemporary 
theory of thermal energy generators. 
  

 
2. Problem formulation 
  
 The classical exergy defines bounds on the common work 
delivered from (or supplied to) slow, reversible processes [1]. 
Such bounds are reversible as the magnitude of the work 
delivered during the reversible approach to equilibrium is 
equal to the one of the work supplied, after the initial and final 
states are inverted, i.e. when the second process reverses to 
the initial state of the first. Our research is towards 
generalization of the classical exergy for finite rates. During 
the approach to the equilibrium the so-called engine mode of 
the system takes place in which the work is released, during 
the departure- the so-called heat-pump mode occurs in which 
work is supplied. Work W delivered in the engine mode is 
positive by assumption. In the heat-pump mode W is negative, 
or the positive work (-W) must be supplied to the system. To 
find a generalized exergy, optimization problems are set, for 
the maximum of the work delivered [max W] and for the 
minimum of the work supplied [min (-W)]. We show that 
while the reversibility property is lost for such exergy, its 
(kinetic) bounds are stronger and more useful than classical 
thermostatic bounds. This substantiates role of the extended 
exergy for evaluation of energy limits in practical systems. 
 
With functionals of power generation (consumption) at 
disposal we can formulate the Hamilton-Jacobi-Bellman 
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theory (HJB theory) for the extended exergy and related 
extremum work. The HJB theory is the basic ingredient in 
variational calculus and optimal control [2-4]. A HJB 
equation extends the classical Hamilton-Jacobi equation [5] 
by addition of extremum conditions, and it is essential to 
develop numerical methods in complex cases (with state 
dependent coefficients) when the HJB equation of the 
problem cannot be solved analytically. Due to the direct link 
between the HJB theory and dynamic programming the 
associated numerical methods make use the Bellman’s 
recurrence equation. These methods are complementary with 
respect of the Pontryagin's principle [6], as both are effective 
seeking methods of functional extrema. Yet, in spite of its 
power, Pontriagin's principle does not yield the principal 
function V which is in our case a general work potential 
describing the change of the extended exergy, the main result 
being sought. Otherwise, when a HJB equation is known, the 
exergy (or work) is explicit, and the discrete numerical 
problem leads to Bellman's recurrence equation, solvable by 
dynamic programming [7]. Our problem of generalized 
exergy falls into the category of finite-time potentials, an 
important problem of contemporary thermodynamics [8]. In 
this paper we solve the problem of extremum work by using 
the concept of multistage energy production or consumption, 
where each stage is the so-called Curzon-Ahlborn-Novikov 
process [8, 9]. The concept of single irreversible stage is 
illustrated in Fig. 1 that presents the temperature–entropy 
diagram of an arbitrary irreversible stage. Each stage can 
work either in the heat-pump mode (larger, external loop in 
Fig. 1) or in the engine mode (smaller, internal loop in Fig. 1).  
 
 

 
 
 
 
 
 
 
 
Fig.1 Two basic modes with internal and external dissipation: power 
yield in an engine and power consumption in a heat pump. Primed 
temperatures characterize the circulating fluid. 
 
Our analysis here extends the previous analyses of the 
problem [8-11] by taking into account internal irreversibilities 
within the thermal machines at each stage of the operation 
following the recent method that applies the factor of internal 
irreversibilities, Φ [12]. By definition, Φ= ∆S2’/∆S1’ (where 
∆S1’ and ∆S2’ are respectively the entropy changes of the 
circulating fluid along the two isotherms T1’ and T2’ in Figure 
1) equals the ratio of the entropy fluxes across the thermal 
machine, Φ = Js2’/ Js1’.  Due to the second law inequality at the 
steady state the following inequalities are valid: Js2’/Js1 >1 for 
engines and Js2’/Js1 <1 for heat pumps; thus the considered 
ratio Φ measures the process irreversibility. In fact, Φ is a 
synthetic measure of the machine’s imperfection. Φ satisfies 
inequality Φ >1 for engine mode and Φ <1 for heat pump 
mode of the system. Our purpose is to derive a generalized 
exergy in terms of Φ.  
 

3. Entropy Production and Process Efficiency 
 
 We shall present here a shortest possible proof of the formula 
describing the real work by using the so-called Gouy-Stodola 
law that links the lost work with the entropy production [1]. In 
the analysis we shall make use of the fact that the thermal 
efficiency of any real thermal engine can always by written in 
the form 12 /1 dQdQ−=η . By evaluating total entropy 
production at the stage (the sum of external and internal parts) 
Sσ as the difference between the outlet and inlet entropy 
fluxes we find in terms of the first-law efficiency η 
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This is a general equation as there was not any special 
assumptions involved in its derivation. It states that the 
entropy production in an arbitrary thermal engine is directly 
related to the deviation of the engine’s efficiency from the 
corresponding Carnot efficiency. This conclusion leads us to 
an important analytical formula for the total entropy source 
that will enable its direct optimization. The entropy balance of 
the thermal machine contains the internal entropy production 
as the source term in the expression 

int

'1

1

'2

2
σdS

T
dQ

T
dQ

=−   (2) 

In terms of the coefficient called the 
internal irreversibility factor the entropy balance of the 
internal part of the system takes the form usually applied for 
thermal machines 
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One can evaluate Φ  from the average value of the internal 
entropy production that describes the effect of irreversible 
processes within the thermal machine. Clearly, in many cases 
Φ  is a complicated function of the machine’s operating 
variables. In those complex cases one applies the data of 

to calculate an averaged value of the 
coefficient Φ. In the analysis of the operation considered the 
quantity Φ is treated as the process constant. In other words, it 
is an average value of Φ, evaluated within the boundaries of 
operative parameters of interest that is used in most of the 
analyses of thermal machines including the present one. For 
chillers and energy generators experimental data of 

are available that allow the calculation of Φ; 
see ref. [12] for more information.  

dtdSs /intint
σσ =

dtdSs /intint
σσ =

 
Consequently, the efficiency η can be evaluated in terms of 
the parameters characterizing the thermal machine 
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After eliminating η from eqs. (1) and (4) we conclude that, 
quite generally, the total entropy production can be written in 
a transformed form 
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The first term in the resulting expression of eq. (5) describes 
the internal entropy source (within the thermal machine) and 
the second one the external entropy source (within the 
reservoirs). Equivalently, after using the definition of the 
internal irreversibility factor  1
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In the last two equations the structural quantity called the 
Carnot temperature T’ was introduced that satisfies the 
thermodynamic relation 
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In terms of the Carnot temperature T’ and factor Φ the 
efficiency η , eq. (4), assumes the simple, pseudo-Carnot form 

T
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The efficiency decrease is caused by the case of finite flows. 
The associated power of entropy production per unit time 
follows from Eqs. (5) and (6) 
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The first of these equations can be applied immediately; the 
second calls for a function T1’(T1, q1) as in eq. (12). When the 
upper heat exchange rate in both reservoirs depends on the 
difference of temperatures in the power a  (a=4 for radiative 
energy exchange and 1 for Newtonian one) i.e. for 
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then, since , the following formula 
holds for the power of entropy generation 
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This means that only in the “endoreversible” case, i.e. when 
the internal entropy production vanishes, the external entropy 
production is simply related to the product of heat q1 and the 
suitable difference of temperature reciprocals, (T’)-1- (T1)-1, as 
in the two-body contact. In the general case of a finite internal 
entropy production the external part of σs follows in terms of 
its internal part in the form 
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so that the sum of both parts of the entropy production agrees 
with the formula (12).  
 
Definition (7) may also be derived from the invariance of the 
entropy production with respect to variables transformation 
when passing from constrained traditional controls T1’ and T2’ 
to the unconstrained control T’. We conclude that the 
analytical description of thermal energy converters in terms of 
the Carnot temperature is particularly simple.  
 
The efficiency worsening caused by the dissipation is 
described in a general way by the transformed formula (1) 

  
 12 / qT sC σηη −=   (14) 

 
Of course the pseudo-Carnot formula, eq. (8), also belongs to 
the class of imperfect efficiencies of the type (14) as it can be 
given the form  
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1

2 TT
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which implies the ratio σs/q1 consistent with eq.(5) and (9). 
Various equations that describe the entropy production σs, 
presented above, are helpful in definite situations when one 
wants to evaluate the efficiency worsening. Yet the 
knowledge of the entropy production σs is also necessary in 
calculations of generalized exergies considered in the final 
section of this paper. But in the dynamical cases essential is 
also the best time behavior of σs.  

 
4. Heat Flux and Power In Steady Operations 
 
Consider steady thermal machines driven by fluids exhibiting 
nonlinear properties.  

 
We begin with the symmetric nonlinear case in which the heat 
transfer rate is proportional to the difference of absolute 
temperatures in certain power a. The case of a =4 refers to the 
radiation, a=-1 to the Onsagerian kinetics and a=1 to the 
Fourier law of heat exchange. (In the Onsagerian case the 
quantities gi are negative in the common formalism 
considered.)  
 
Next we consider the “hybrid nonlinear case” in which the 
upper-temperature fluid is still governed by the kinetics 
proportional to the difference in Tn whereas the kinetics in the 
lower reservoir is Newtonian. 
  
Here we consider symmetric nonlinear case. We assume that 
the energy exchange process in the upper reservoir satisfies 
equation (11), and that an equation of the same type and with 
the same coefficient a is valid for the energy exchange in the 
lower reservoir, namely 
 

)( 2'222
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 To express the internal balance equation for the entropy 
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in terms of T’ and T1’ we substitute TTTT ′≡ /2'1'2 into (17). 
Next we solve the result obtained with respect to T1’. This 
leads to an equation describing (in terms of T’) the upper 
temperature of the circulating fluid T1’
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From this expression and equation (11) the heat flux q1 
follows in terms of T’. This heat flux is obtained in the form 
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which represents “thermal characteristics” of the system. An 
expression for T2’ corresponding with (18) follows from the 
thermodynamic definition of Carnot temperature, 

. Also, qTTTT ′≡ /2'1'2 2= q1(1-η), where η is defined by the 
pseudo-Carnot expression (8). Thus all necessary quantities are 
found. We observe that for a=1 the kinetics of heat exchange 
depends on the difference of two temperatures T1 –T’, as in the 
case of direct two-body contact. Yet, in nonlinear processes the 
heat flux (19) emerges as function of three (not merely two) 
temperatures, T’, T1 and T2. This means that the rule of the two-
body contact (satisfied when a=1) is invalid in the case of 
nonlinear processes. Still we can evaluate associated power 
limits by maximizing power p related to equation (19) with 
respect to the free Carnot control, T’; see equation (22) below.  
 
For a=4 the model describes the radiation engine usually 
called the Stefan-Boltzmann engine. In spite of the model’s 
simplicity, its two “resistive parts” take rigorously into 
account the entropy generation caused by simultaneous 
emission and absorption of black-body radiation, the model’s 
property which some of FTT adversaries seem not to be aware 
of. This entropy generation is just the external part of the total 
entropy production that follows as the “classical” sum:  
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where each qi is given by the Stefan-Boltzmann-like law. For 
the “symmetric”kinetics governed by the differences in Ta, the 
T’-representation of the total entropy production in the system 
follows from equations (9) and (19) 
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The superiority of Carnot control T’ over the heat flux control 
q1 may be noted here. Since the heat-flux expression (19) 
cannot generally be inverted to get an explicit function T’(q1), 
the analytical expression for the heat-flux representation of 
the entropy production or associated mechanical power p 
cannot generally be found in an analytical form. Still we can 
express the entropy production and related power p in terms 

of Carnot control, T’, and then evaluate a limiting power by 
maximizing p with respect to the free Carnot control, T’. The 
appropriate power expression is 
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In the case of analytical difficulties that may occur for a 
different from the unity the maximization can easily be 
performed graphically by making the chart of p(T) at all 
remaining variables kept constant. Thus, in general, the 
maximization can be performed analytically or graphically 
using the Carnot T’ as the free control. 
 
We consider now hybrid nonlinear case or the case when the 
radiation law governs the heat flow only in the upper 
reservoir, whereas it is the Newtonian model that governs the 
lower one 
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Again, the efficiency of the imperfect unit is satisfied by 
expression η = 1 - ΦT2’/T1’. To express the internal balance 
equation for the entropy 
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in terms of T’ and T1’ we substitute TTTT ′≡ /2'1'2 into (24). 
This leads to T’ in terms of T1’  
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and then to the mechanical power p in terms of T1’. The 
thermal efficiency of the engine can be obtained in the form 
using the temperature T1’ as an effective control variable 
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This leads to the mechanical power expression with the 
explicit control T1’
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Since from Eq. (11) , the heat flux 
representation of the above equation is obtained in the form  
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Equations (27) or (28) allow analytical or graphical 
maximization of power with respect to a single control 
variable,  T1’or q1. This leads to the steady limits on power 
production in imperfect units. 
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We note that a suitable control may be the Carnot temperature 
itself or a function or an operator of the remaining variables. 
The operator structure of T’ is frequent in dynamical 
problems. 

 
5. Dynamical Setting for Finite Resources   
 
When resources become finite and/or the propelling fluid 
flows at a finite rate the driving temperature and other intense 
parameters decrease along the process path. The above 
analysis is generalized to take into account the decay of the 
thermal potential of resource in time or space. This means that 
the previous (steady) analysis need to be replaced by a 
dynamic one and the mathematical formalism transferred 
from the realm of functions to the realm of functionals. Here 
the optimization task is to find an optimal profile of the 
driving temperature T’  along the resource path (fluid’s path) 
that assures the minimum of the integral entropy production 
and – simultaneously – the extremum of the work consumed 
or delivered (Fig.2). 
  

 
 
Fig. 2. The dynamic work limit found for a system of a resource and 
infinite bath leads to a generalized exergy evaluated for a finite 
duration of the state change and a minimal irreversibility. 
 
In dynamical systems differential forms of expressions are 
necessary. For a suitably defined time variable τ (associated 
with the resource fluid; see eq. (32) below) and an arbitrary 
type of heat transfer (Newtonian or not) the internal entropy 
production is 
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The total entropy production, which determines the lost work 
in equations of extended availabilities is the integral  
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The limiting production or consumption of mechanical energy 
is associated with extremum power or the minimal sum of 
functionals (29) and (30) or minimum of the overall entropy 
production (31). These equations assume that it is possible to 
determine explicit form of functions describing the Carnot 
temperature T’ in terms of the current fluid’s temperature T 
and its time derivative. Such functional structure would allow 
to apply the variational calculus in the optimization analysis. 
If this function is impossible to find in an explicit form then 
equations (29) and (30) should be written in the form in which 
T’ and T1 are two separable variables in the Pontryagin’s 
algorithm of the optimal control. In this case a differential 
constraint must be added that limits the changes dT1/dt with  
the state variable T1 and control T’(see eq. (33) below). 
 
We shall now specialize to what we called the symmetric 
nonlinear case. It involves the radiative heat transfer (a=4) in 
both upper and lower reservoirs and corresponds with the 
form (22) of the intensity of total entropy production. 
 
We can define the nondimensional time τ1 by the equality 
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which means that the driving heat flux can be measured in 
terms of the temperature drop of the propelling fluid per unit 
of the nondimensional time. Comparing the result obtained 
with q1 of equation (20) we obtain the basic differential 
equation 
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which is the differential constraint in the problem of 
minimization of the total entropy production (31) by 
Pontryagin’s maximum principle. However, it should be noted 
that the method of variational calculus cannot effectively be 
applied (see the related argument below). 
 
We shall now specialize to what we called the hybrid 
nonlinear case. It involves the radiative heat transfer (a=4) in 
the upper reservoir and a convective one in the lower one 
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To obtain an optimal path associated with the limiting 
production or consumption of mechanical energy the sum of 
the above functionals i.e the overall entropy production 
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(36) 
has to be minimized for a fixed duration and defined end 
states of the fluid. The most typical way to do accomplish the 
minimization is to write down and then solve the Euler-
Lagrange equation of the variational problem. Analytical 
solutions are seldom, however, thus one has to rest on 
numerical techniques. 
 
6. Thermodynamic Aspects of Nonliner 

Kinetics 
 
In general equations of nonlinear macrokinetics a recent 
approach considers coupled transfer of mass (m) and heat (h). 
Introduced are potentials Fi = (1/T, -µi/T), i=0, 1…n, which 
are the thermodynamic conjugates of the extensive variables 
in the Gibbs equation for the system’s entropy 
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The process kinetics is described by the general exchange 
equation for the net flux Ji
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whose equivalent form in terms of deviations from 
equilibrium is  
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as the common value of the absolute current at equilibrium.  

 
In the case of pure heat exchange the corresponding kinetic 
set contains just one equation that describes the nonlinear heat 
flux. The corresponding kinetic set describing the contains 
two equations. The first one describes the heat flux driving 
the engine 

)/)(exp( 11
11 R

eqeq TTEIq −− −−∆=   (41) 
where 

)/exp( 10
11 R

eqeq ETII −−≡    (42) 
 
The constant E is an activation energy. Whence, close to 
equilibrium, a linear approximation of the nonlinear exchange 
equation follows as 
 

'1'11
1'1

11 /)()( TTTTEITTEIq eqeq −≅−= −− -1-1 RR   (43) 

Comparing this expression with the classical Newton’s 
structure ( )'1111 TTgq −=  we find that the conductance in 
the present model varies with T in accordance with the 
equation 
 

'1
10

1'111 /)/exp(/ TTEETITTEIg
eqeq -1-1 RRR −−==  (44) 

 
This shows that the correspondence with classical equation of 
heat exchange can be assured. Above equation may serve to 
estimate the value of the exchange current provided that the 
heat exchange coefficient a, constant E and an equilibrium or 
average temperature of two bodies is known. It should be 
realized that E characterizes the temperature dependence of 
heat conductivity. We can now write down the kinetic 
equations for both reservoirs. 
 
For the known process coefficients the heat exchange 
equation for the first reservoir has the form 

 
)}/exp()/{exp( '1111

0
11 TETEIq RR −−−=   (45) 

 
whereas that for the second fluid is 

)}/exp()/{exp( 22'22
0
22 TETEIq RR −−−=            (46) 

 
On this ground one can develop the nonlinear theory in which 
thermal conductivities and related conductances are variable 
i.e. are state functions.  
 
7. Newtonian Fluids 
  
Analytical solutions are possible for linear problems in 
particular. For the Newtonian heat exchange in both reservoirs 
(a=1) the above formulae simplify to the forms  
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and 
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ext ∫ −
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Their sum constitutes the functional of the total entropy 
production that is the basics for the linear theory developed 
earlier [13]. Still the linear theory presented here is more 
general than the cited previous theory since the latter is here 
generalized to the imperfect energy generators (consumers) 
associated with Φ different than the unity.  
 
Equations (34)-(36) contain expressions representing the 
Carnot temperature T’ in terms of the upper reservoir 
temperature T1 and the time derivative of this quantity. In fact, 
these equations prove that the success in achieving Lagrange 
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functionals (necessary when one wants to apply the classical 
method of calculus of variations) is crucially dependent on the 
possibility of getting Carnot temperature T’ in the form of an 
explicit analytical function of T’ and dT’/dt. In the case of the 
symmetric nonlinear model (radiative exchange on both sides 
of the engine) such explicit function was impossible to find, 
yet as we have shown now the possibility exists in the case of 
the hybrid nonlinear model. For the latter model one can 
therefore write down explicit Euler-Lagrange equations of the 
variational problem and perform extremization of functionals 
describing either the entropy production or produced 
(consumed) power. In fact, our earlier work [13] shows that 
such functionals yield the same optimal trajectory whenever 
fixed end states are assumed at both ends of the process.  
 
For a Newtonian fluid the minimization of the entropy 
production integral of the dynamical problem involves the 
extension of the established endoreversible formula [13] to the 
case taking the internal dissipation into account 

τ
τ

τ
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TT
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−
+

= &
&&

& 1
)(

.  (49) 

The optimal solution can be obtained by the variational 
calculus; it proves that an unconstrained extremal is an 
exponential curve satisfying the optimality condition 

TΦ
d
dT )(ξ

τ
= .  (50) 

The modified non-dimensional time τ, or the ratio of pipeline 
length x and the height of the transfer unit HTU related to 
overall g’ of Eq. (10), is identical with the (Φ dependent) 
overall number of transfer units. ξ(Φ) is the rate indicator 
which is positive for the fluid’s heating and negative for 
fluid’s cooling. From the problem boundary conditions of the 
problem the numerical value of the ξ  follows. 
 
As it follows form the definition of Φ  in equation (4) 

)1(1
1

'1
int −= − ΦqTsσ                 (51) 

 
This equation can be used to prove that the second term in 
(49) does not represent the sole effect of the internal 
dissipation. The same conclusion holds for the general 
nonlinear model. For this model we find 
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In fact, each of two additive parts of functional (49) or the 
additive parts of nonlinear functionals discussed can 
contribute to the external and internal dissipation.  
 
8. Generalized Exergy as a Dynamic Limit 
 
Carnot temperature control ensuring the extremum of work 
associated with the functional (49) is 

 
( ))(1)()( ΦTT ξττ +=′  

( ))/()/ln(1)/( )/()( ifififi TTTTT
ifi

ττττττ −+= −−     (54) 
 

It corresponds with the power expression (28) in the case a=1. 
Its integration along the optimal path with respect to time 
leads  the generalized availability  
 

)/ln(
)]/[ln()/ln()1(

2

eif

e
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TT
TTΦcTTTTΦcAA

±−
±−+=∞

ττ
       (55) 

 
The properties of this function may be depicted in a draft  that 
illustrates the effect of internal irreversibilities Φ on limiting 
finite-rate work yield in engines and consumed in heat pumps. 
Generalized exergy of limiting continuous process, , 
prohibits processes from operating below the heat-pump mode 
(the lower bound for work supplied) and above the engine 
mode line (the upper bound for work produced).  The so-
called endoreversible limits correspond with Φ =1; weaker 
limits of classical exergy are represented by the straight line 
A= A

∞A

class. Regions of possible improvements are found when 
imperfect machines are replaced by those with better 
performance, including limits for Carnot machines. 
 
The classical thermal availability contained in this equation is 
defined in the standard way 

 
)/ln()( eeeclass TTcTTTcA −−≡ .  (56) 

 
The classical availability is the potential or the state function 
whose change between two arbitrary states describes the 
reversible work. On the other hand, generalized availability 
functions are irreversible extensions of this classical function 
including minimally irreversible processes. Note that the 
mean process efficiency or the ratio QA /∞

1 is lower than 
the pseudo-Carnot efficiency (8) due to the finiteness of the 
resource flow and the corresponding decrease of the resource 
temperature as the process advances in time.  
 
9. Conclusion 
 
The obtained exergy functions are discrete generalizations of 
the continuous dissipative exergy for the case of imperfect 
stages. The generalized exergy in processes departing from 
the equilibrium (upper sign) is larger than the one in processes 
approaching the equilibrium (lower sign). This is because one 
respectively adds or subtracts the product of Te and entropy 
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production in equations describing the generalized 
availability. We observe that the limits for mechanical energy 
yield or consumption provided by exergies  are always 
stronger than those defined by the classical exergy. Thus, in 
both modes the generalized exergies provide enhanced bounds 
in comparison with those predicted by classical exergy. 
Equation (42) shows that both internal and external 
dissipation increase the minimum work that must be supplied 
to the system. Likewise, both sort of dissipations decreases 
the maximum work that can be produced by the system. 
Therefore functions provide work limits which take into 
account limitations resulting from finite rates of external 
transports and internal irreversibilities. The use of concepts 
developed to systems with mass transfer and chemical 
reactions is the subject of the current effort.   
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Nomenclature 
∞A generalized exergy of a continuous process 

Aclass classical available energy (exergy)   
C specific heat at the constant pressure 
G molar mass flux, total flow rate  
g1, g  partial and overall conductances  
HTUheight of transfer unit 
P, p cumulative power output and power output at a stage 
Q1 cumulative heat  
q1driving heat power 
R(x, t) optimal work of cost type in terms of state and time 
r1, r2 resistances, reciprocals of conductances g1 and g2
S  entropy of controlled phase 
∆S1’ entropy change of circulating fluid along isotherm T1’ 
∆S2’ entropy change of the circulating fluid along  sotherm T2’

Sσ specific entropy production  
T temperature of controlled phase 
T1, T2 bulk temperatures of fluids 1 and 2 
T1’, T2 temperatures of circulating fluid (Fig. 1) 
Te constant equilibrium temperature of environment 
T ′ Carnot temperature, temperature of controlling phase 
t physical time, contact time  
T& =dΤ/dτ  rate of temperature change as control variable 
V =maxW optimal work function of profit type  
W= P/G total specific work or total power per unit mass flux  
x transfer area coordinate 
   
Greek Symbols 
α‘overall heat transfer coefficient   
η= p/q1 first-law efficiency 
Φfactor of internal irreversibility  

σscumulative entropy production 
τnondimensional time, number of the heat transfer units 
(x/HTU)  
Subscripts    
ii-th state variable 
mpmaximum power point   
1, 2first and second fluid 
 
Superscrits 
eenvironment, equilibrium 
ffinal state 
iinitial state 
N total number of stages 
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