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Abstract. We present a new MCP method to estimate the 
wind resource at a target site based on a short set of concurrent 
measurements from that site and a reference site for which also a 
long historical wind speed record is available. 
 
The method derives from time-series analysis methods used in 
nonlinear dynamical systems and uses Singular Systems Analysis 
to define the optimum correlation between the target and 
reference site, which is then used to build the model used for 
estimating the target site resource.   The performance of this 
method is then applied to a set of Met.Office date from Scotland 
and benchmarked a basic linear-regression MCP. 
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1. Introduction 
 
Given that modern wind farms have installed capacities of 
several hundred megawatts or more, even a small 
overestimate or an uncertainty in the predicted resource 
can result in a shortfall of income of several million 
pounds annually per wind farm. For this reason, wind 
resource assessment is an important part of siting and 
developing wind farms.  In particular, correcting any short-
term measurements at a site for inter-annual variability is 
required to estimate the long-term resource. 
 
The principle behind the MCP methodology is to correlate 
short-term wind data of a target site, usually a site targeted 
for the development of a wind farm, with long-term wind 
data of a reference site, often a meteorological office site 
nearby, so that a relationship between them is established 
[1]. Carta et al. [2] recently published a review, which 
provides very detailed descriptions of the methods 
currently applied.   
 
 

2.  MCP method 
 
Her we introduce first the most basic MCP method using 
linear regression, which is used as a benchmark to test 
the new methods against. After this, the principle of the 
new methods is introduced in section B. 
 
A. Linear Regression MCP 
 
In general, the following function mathematically 
describes MCP to estimate the wind speed at the target 
site, Utarget: 

                                                                                                          
𝑼𝒕𝒂𝒓𝒈𝒆𝒕 = 𝒇 𝑼𝒓𝒆𝒇,𝜽𝒓𝒆𝒇                 (1)        

       
where Uref is the wind speed at the reference site and θref 
the wind direction at the reference site. The function f has 
a fixed form which is determined from the concurrent 
data and then applied to the historical record. The 
simplest example of this function is a linear function of 
the wind speed only and ignoring wind direction:  

                                                                                              
𝑼𝒕𝒂𝒓𝒈𝒆𝒕 = 𝒃 +𝒎  𝑼𝒓𝒆𝒇                (2)        

       
where b is a constant and m is the gradient, the values of 
which are determined from a linear regression of the 
available target site measurements from the measurement 
campaign against the reference data obtained at the same 
time from the reference site.  
Once the coefficients, b and m, have been determined, 
eq.(2) can be applied to the existing historical data set 
from the reference site to calculate the corresponding 
wind speeds at the target site for that historical period. 
 
Obviously, the fact that the wind direction does affect the 
local wind resource at the target site differently than at 
the reference site is acknowledged and many methods 
have been developed to refine the linear regression to 
take that into account [e.g., 2].  Other methods, for 
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example those based on correlating wind speed 
distributions, or using non-linear methods such as 
Artificial Neural Networks exist but, in the context of 
testing the new method against a basic benchmark, are not 
followed up in this paper. 
 
B. Singular-Systems MCP 
 
The majority of MCP methods are constrained by 
assuming one, or a few, pre-determined functions between 
either instantaneous wind speeds or wind speed 
distributions across the two sites.  This new method is 
based on finding the functional form empirically and is 
inspired from time-series analysis methods in nonlinear 
dynamical systems [3,4].   
 
The assumption is that the wind speed dynamics at the two 
sites together are governed by a common dynamical 
system for which the essential dynamics can be inferred 
from the measurements at both sites not at a single 
instance in time but from time series sections extending 
over a window of few hours. The ‘Singular Systems’ 
aspect then reformats that description obtained from the 
time series sections to isolate the most significant 
components to capture the common behaviour across the 
two sites.  The optimisation uses the statistical tool known 
as Principal Component Analysis (PCA) or Empirical 
Orthogonal Function (EOF) analysis.  This method was 
previously applied to wind speed measurements at a single 
site for forecasting the wind speed a few hours ahead [5,6].  
To apply the PCA to the wind speed time series, it is 
advisable to express the wind speed and direction in wind 
vectors, u= –U sinθ and v= –U cosθ, to avoid 
discontinuities across 0°/360°. 
 
By replacing the four measurements at time t of  
 

(uref(t), vref(t),  utarget(t), vtarget(t)) 
 
by an extended set 
y(t)= (uref(t,t-1,..t-m), vref(t,..t-m), utar(t,..t-m), vtar(t,..t-m)) 

 
A time-delay matrix, Y, is created, where each row 
contains one of the extend sets.   Applying a Singular 
Value Decomposition (SVD) to that time-delay matrix: 
 

Y = P Λ S   (3) 
 
Where P is the matrix of Principal Components, Λ the 
diagonal matrix of singular values, and S the matrix of 
singular vectors.  Each column of S contains a singular 
vector describing the empirical pattern of behaviour across 
the four variables over the selected window.   The  
corresponding diagonal entry in Λ contains the mean 
amplitude of that pattern contributing to the measurements, 
and the corresponding column in P contains the normalised 
amplitude of the pattern at each instance in time. 
 
Applying this SVD to the delay matrix created from the set 
of concurrent data from the measurement campaign at the 
target site and the data available from the reference site 
determines the values for Λ and S.  The standard SVD 
implementations in analysis packages such as MATLAB 

or R return these matrices ordered in descending order of 
Λ.  That means that the first singular vector contributes 
most to the variance of the measurements.  By truncation 
the Λ and S matrices to r columns only, the system is 
truncated to retain only the r strongest pattern, effectively 
removing small-scale localised fluctuations but 
maximising the coherent behaviour across the two sites  
These truncated Λr and Sr can then be used to calculate 
new principal components, Pn from a delay matrix 
consisting of new measurements, Pn = Yn Sr

T Λr
–1, 

where ‘T’ indicates the transpose. 
 
The new aspect of the method developed here stems from 
the fact that in MCP, the historical information is only 
from the reference site and we are seeking the 
corresponding information for the target site.   In 
practical terms, this means that we can only fill the first 
set of columns of Yn, say Yh and that we can only use the 
first half rows of Sr, , say Sh, and the first half of Λr,,  Λh : 
 

Pn = Yn Sr
T Λr

–1   (4) 
 
However, as each row in S or Sr or Sh contains 
information about all four sites, applying eq.(4) to the 
historical data only activates the corresponding target 
components, and we can estimate the target values as 
 

Ye = Pp Λh Sh = Yn Sr
T Λr

–1 Λh Sh  (4) 
 
From this estimated time-delay matrix, the target 
velocities can than be extracted as the appropriate column 
vectors. 
 
3.  The data source and MCP application  
 
A. Data Source 
 
A typical (concurrent) data measurement period used is a 
year or more [7].   Our data set contains twelve years 
from 1999 to 2010 of wind speed and direction 
measurements from eight Met. Office stations across 
Scotland through the British Atmospheric Data Centre 
[8], listed in Table I, of which seven cover a fairly 
narrow latitude range but extending from the western 
island of Islay to Edinburgh at the east coast, and another 
site from the far north-west on the Isle of Harris and 
Lewis.  All data were recorded with anemometers at 
10 m above ground at an hourly interval with the data 
stored in knots, rounded to the nearest ±1 kn but 
converted to m/s for this analysis. 
 

Table I. – Anemometer locations 
 

No Location Latitude Longitude 
1 Stornoway 58.2138 -6.31772 
2 Port Ellen 55.6813 -6.24866 
3 Machrihanish 55.4408 -5.69571 
4 Prestwick 55.5153 -4.58343 
5 Glasg airport 55.9068 -4.53122 
6 Salsburgh 55.8615 -3.87409 
7 Edinb airport 55.9284 -3.34294 
8 Edinburgh south 55.9228 -3.18750 
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A. MCP settings 
 
The analysis covered all possible pairs of stations, treating 
each both, as target and reference site. Two different 
lengths of training periods of concurrent data were used, a 
single calendar year and two consecutive calendar, and 
then using in turn each possible year or 2-year period.  In 
the analysis presented here, the window length to create 
the delay matrix covered either a 24h or a 48 period, and 
truncation level ranging from 3 to 12 retained singular 
vectors were explored, leading to 896 different 
permutations explored in the analysis. 
 
Based on the window length to create the delay matrix and 
the number of retained singular values and vectors, the 
resource at each target site was predicted for the entire 
twelve-year period. 
 
C. Analysis method 
 
To quantify the degree to which the wind resource is 
estimated correctly, we chose to calculate the error in the 
wind speed distribution obtained from the MCP method.  
To do this, first the distribution from the predicted 
resource was determined as the histogram of predicted 
wind speeds in bins of 1 m/s, then the absolute difference  
between the likelihood of a particular wind speed bin to 
that actually observed in the full record was calculated and 
finally, the errors for each wind speed bin were added to 
calculate a total absolute error. 
 
From the total absolute error, a performance index was 
defined as the ratio of the total error from that particular 
PCA-MCP prediction over that from the linear regression.  
A performance index of 1 implies that both methods 
perform equally well, but a performance index < 1 implies 
that the PCA-MCP is better than linear regression.  
 

 

 
Figure 1 – Actual (blue shaded) and predicted (red cross-hatched) 
wind speed distributions at the target site using linear regression 
(upper frame) and the PCA-MCP (lower frame). 

4.  Results  
 
A. Wind resource predictions 
 
Figure 1 shows the example of predicting the wind speed 
at Edinburgh Airport from the wind speed at Salsburgh, 
around 30 km to the West based on a training period of 
2009-2010.  In both figures, the predictions are the red 
cross-hatched distributions, overlaid over the actual 
distribution (blue shaded region).  It is clear that the basic 
MCP using linear regression substantially overestimates 
the wind speed bins between 3 and 6 m/s and 
underestimates the lower wind speeds as well those 
between 6 and 14 m/s.  While the PCA-MCP also 
overestimates the moderate wind speeds, it does so to a 
much lesser degree and only underestimates the wind 
speed range from 5 to 10 m/s.  This substantial 
improvement is reflected in the degree of overlap with 
the actual distribution of 83% compared to an overlap of 
only 69% for the linear regression.  Expressing the 
overlap as the absolute error between the distributions, 
they translate to an error of eLR= 1 – 0.69= 0.31 for the 
linear regression and ePCA= 1 – 0.83= 0.17 for the PCA-
MCP, giving a performance index of PI= ePCA/eLR = 0.55.  
That means that the prediction error has been reduced to 
55% of that made by using linear regression 
 
B. Performance test 
 
Exploring the PCA-MCP and comparing against the 
linear regression for all possible pairs of stations from 
Table I, and using the set of window lengths and 
truncation levels listed in §3.A for the PCA-MCP, leads 
to an overall pattern of the performance index as shown 
in Figure 2.   This shows that the prediction error through 
the PCA-MCP is in most of the 896 cases between 10 
and 50% of that from the linear regression.  It is 
extremely rare that PCA-MCP is no better, or even 
slightly worse, than linear regression. 
 
Initial thoughts that the calculation of the PCA-MCP 
prediction of the reference site itself might give a 
measure of the expected prediction error at the target site 
appears not to hold, and current further work is aimed at 
determining a rational method to identify the best 
window length and truncation. 
  

 
Figure 2 – Histogram of Performance indices, PI, achieved by 
PCA-MCP against linear regression for all pairs of stations and 
PCA-MCP settings explored. 
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4.  Conclusion 
 
In this paper, we developed a new wind resource 
assessment method, taking the concept of the traditional 
measure-correlate-predict (MCP) and developing is using a 
time-series analysis technique from Dynamical Systems 
(Chaos) Theory.  In that approach, the formalism 
determines the shape and coefficients of the best 
relationship between the target and a reference site by 
treating the measurements as representative of the joint 
dynamical system, rather than one as input and the other as 
output. 
 
The work has progressed so far to demonstrate on a variety 
of station pairs, some several hundred kilometres apart, 
that this method is almost always superior to the basic 
standard MCP using linear regression. 
 
The next stage of the work is to subject it to a systematic 
analysis to identify if it is possible to judge the quality of 
the prediction at the target site from the information 
available to the analyst.  The PCA-MCP method using the 
long-term reference data not only predicts the wind speeds 
at the target site but also returns a new estimate of the 
reference site data.  The initial idea that this reference 
estimate might give clues about the quality of the target 
prediction could not be substantiate.  Other possible 
quantities to test in the next stage of development are the 
estimates returned from applying the truncated PCA-MCP 
predictor to the data from the reference site for the training 
period and thus predicting the target wind speed for the 
training period. 
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