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Abstract 
The paper presents an approach to the useful theory concerning 
the problem of generating high quality AC voltage and current 
waveforms in multilevel converters. The objective is to describe 
a novel proposal of AC waveforms synthesis based on applying 
analytical methods using sets of orthogonal wavelets. The 
discussion includes a short survey of Haar wavelet and a pro-
posal of output waveforms synthesis based on wavelet trans-
form. The comparison of the proposed method with standard 
solution is discussed. It has been done by use of such criteria as: 
average square error and total harmonic distortion (THD). 
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1. Introduction 

In contemporary industry and public area a great de-
mand has been appeared for higher power devices con-
verting electric energy. The devices like voltage and 
current converters which are able to control and to supply 
diverse equipment working in power range of hundreds 
kW and more. These devices have to fulfil definite and 
diversified requirements what implies diversified pur-
poses and methods of electric energy conversion. For 
instance in AC drives where the possibility of speed 
regulation is essential, the converter e.g. a voltage or 
current source inverter (VSI or CSI) has to assure the 
adjustment of output waveform fundamental level and 
frequency[1, 2]. 

There are many other industrial applications e.g. un-
interruptible power suppliers (UPS) or distributed power 
generation systems, where the essential demand is to 
generate 50 or 60 Hz sinusoidal voltage waveforms. The 
quality of generated waveforms, especially the Total 
Harmonic Distortion factor (THD), should comply with 
appropriate standards. Even if there is a need of output 
waveform adjustment, the output parameters have to be 
adjusted in a relatively small range. 

In many devices like UPSs, active filters or voltage 
regulators in electric energy grids the main and most 
important features are: high quality of output waveforms, 
output stability and efficiency of the device [4, 5, 6]. 
Similar requirements are to be fulfilled in converters 
applied in renewable energy systems. In wind farms the 
conversion of produced energy is inevitable in order to 
solve the problem of unbalanced voltage levels and fre-
quency synchronization of many separated sources. The 
similar problem appears in static DC sources like photo-
voltaic farms and fuel cells. The resulting DC power 

should be converted to AC form using power electronics 
converters. 

During the first period of power electronics evolution 
a two-level inverter was considered as the most suitable 
device used to energy conversion in aforesaid applica-
tions. The features and performance as well as drawbacks 
and limitations of the two-level inverter have been 
largely recognized and verified in practice. Latest 
achievements in power semiconductor technology permit 
to work with higher switching frequency, but fast switch-
ing accompanying the PWM control causes power losses 
in switching elements thus cutting inverter efficiency 
down [7]. 

The range of the output power is a very important 
and evident limitation of two-level inverters. The total 
power is determined by the semiconductor switches 
properties. This essential disadvantage can be reduced 
using multilevel inverters. Recently, the multilevel in-
verters have emerged as a new and very important class 
of converters. Thanks to their promising performance, 
multilevel inverters are becoming more and more an 
alternative to conventional two-level inverters. They 
permit to overcome the problem of limited power and to 
shape output waveforms. A result is that many multilevel 
converters have been applied in industry. 

The development of multilevel converters comprises 
an area of research for new topologies, control strategies 
and theory. Producing the required voltage or current 
waveforms is possible in many ways: e.g. sinusoidal 
PWM, selective harmonic elimination, space-vector 
modulation (SVM) or shaping the stepped voltage or 
current [8, 9, 10]. Important works and studies concern 
the subject of frequency adjustment. Diverse methods of 
converters’ control such as computing the adequate 
switching angles of stepped waveforms or cancelling 
specified harmonics have been developed [11]. In all 
solutions a large number of semiconductor switches is 
needed. The switches are not charged equally and their 
admissible charge parameters are not fully utilized. It 
results in decreasing of converter efficiency which is a 
serious disadvantage especially in higher power applica-
tions.  

The aforementioned disadvantages can be slightly 
reduced by use of novel converters topologies as well as 
mathematical tools aided control strategies. The paper 
deals with technique of shaping the stepped output wave-
forms in multilevel converters. A mathematical approach 
to the control strategy based on wavelets transform is 
presented. The output waveform synthesis is accom-
plished using set of orthogonal wavelets. The discussion 
includes such mathematical tools like Haar wavelet trans-
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form. The comparison of methods and their impact on 
topology is discussed in chapter 4. The comparative 
analysis has been done by use of three criteria: number of 
DC sources needed, average square error and THD fac-
tor.  

2. Haar wavelet function 

The wavelets is a term for mathematical functions, 
which allow the analysis of signals in different time scale 
and with different resolution. The term „wavelets” is the 
direct translation of French term „ondelettes”, which 
means „little waves”. Thanks to the adjustable „scope of 
the view” the wavelets can be used to distinguish and 
analyse small and big details of the investigated process. 
Especially they are useful in analyse of discontinuous or 
stepped processes. The wavelets have been applied in 
many not directly related areas like seismology, video 
analysis, quantum mechanics or electronics [12, 13, 14, 
15, 16, 17]. 

Till now the wavelets have been used mainly for 
analysis of processes or signals based on decomposition 
of the elements of the processes. The following consid-
erations will prove that wavelets can be also useful in 
composition of the power electronics signals and struc-
tures. 

For this purpose the Haar wavelets have been 
adapted. The fundamental Haar wavelet can be con-
structed by transforming the following scaling function 
φ(t): 
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creates the fundamental Haar wavelet: 
ψ(t)=ϕ(2t) − ϕ(2t − 1) which can be defined as follows: 
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The scaling functions and the fundamental Haar 
wavelet are presented in Fig. 1. 

Introducing two parameters: m – scale factor and n – 
displacement factor it is possible to write the family of 
wavelets: 

( ) ( ) ...,2,1,0,1,2...,,for2ψ
2
1ψ −−=−= − nmntt m

mmn
 

The equation defines an orthonormal wavelet family 
with dyadic scaling.  

 
Fig. 1. The scaling functions and and the fundamental Haar 

wavelet. 

For given m the wavelet scale is 2m. The scale factor 
m – settles the width and amplitude of the wavelet, and 
the displacement factor n – settles the wavelet position on 
the time axis. 

The fundamental Haar wavelet corresponds to the 
factors: m = 0 and n = 0 and can be denoted as 
ψ(t) = ψ00(t). 

3. Wavelet waveforms synthesis 

The Haar wavelet form is similar to the form of the 
voltage or current pulse that can be obtained using simple 
one-phase inverter i.e. H-bridge cell. The displacement 
and width of the wavelet can be freely controlled. Thanks 
to these properties it is possible to apply wavelets in 
power electronics e.g. to form the output stepped wave-
forms of multilevel converters.  

Let us define the scaling function φ(x) in an interval 
x∈<0,2π): 
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The fundamental proposed wavelet is defined as the 
Haar one alike: 
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The wavelet determines one period of the rectangular 
wave and is mother function introducing a family of 
wavelets: 

( ) ( ) ...,2,1,0,1,2...,,for22 −−=π−= − nmnxx m
mn ψψ  
The wavelet scale is done as 2m2π and its displace-

ment on the x axis is determined as n-times 2m+1π. The m 
factor scales not only the wavelet but the amplitude too. 
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The scaling function and a few wavelets have been 
presented in Fig. 2. 

 

 
 
Fig. 2. The scaling function φ(x) and wavelets ψmn(x): 

a) scaling function φ(x), b) fundamental wavelet ψ00(x), 
c) wavelets ψ-1-1(x), ψ-20(x),ψ-22(x),ψ-37(x). 
 
All wavelets ψmn(x) are orthogonal in the interval 

x∈<0,2π). The defined statement creates a family of 
orthogonal functions and can determine a basis of wave-
let transform. A continuous wavelet transform is defined 
as: 

( ) ( ) ( ) xxxfnmWf mn dψ, ∫
∞

∞−
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and presents itself a scalar product of a function f(x) and 
function ψmn(x). A complete reconstruction of the func-
tion f(x) takes place when the inverse wavelet transform 
is applied 
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The symbol C denotes a constant which can be calculated 
from Fourier transform of the function ψmn(x). 

For applications more comfortable is to use a discrete 
inverse wavelet transform which is defined by the follow-
ing equation: 
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It could be written as a sum of wavelets ψmn(x) multiplied 
by coefficients amn 
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The coefficients amn, called wavelet coefficients, are 
scalar products of the function f(x) and wavelets ψmn(x). 
In the interval x∈<0,2π) they are given as 
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The constant Cm is only dependent on coefficient m and 
has the same value for different n. 

Denoting 
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it is possible to write fΨ ( x ) as a sum of components 
fmn ( x ): 

( ) ( )∑ ∑
=

−=

−

=

−

=
0

3

12

0
ψ

m

m n
mn

m

xfxf  

The components fmn ( x ) present component wave-
lets, amplitude and phase of which is determined by 
coefficients a mn. 

Practically in power electronics applications, the ap-
proximation of a sine wave should be realized using a 
finite number of wavelets. Natural aspiration of designers 
is to utilize the possibly lowest number of components. 
The accuracy of approximation depends on it. In mathe-
matics the accuracy is determined as an average square 
error δ, a very useful criterion destined to that purpose. In 
power electronics the most important criterion of the 
approximated waveforms is THD factor. 

Let us denote by fΨ ( x ) a waveform approximating 
the function f (x)=sin(x) in the interval x∈< 0, 2π ). 
Assuming that fΨ ( x ) forms a combination of wavelets 
determined by index m = -3, -2, -1, 0 it can be written as 
a sum: 
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The coefficients a mn have been collected in Table 1. 

TABLE 1: The wavelet coefficients a mn. 

a
mn

 n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 

a
0n

 0,6366 –  –  –  –  –  –  –  

a
– 1n

 0 0 –  –  –  –  –  –  

a
– 2n

 - 0,2637 0,2637 0,2637 - 0,2637 –  –  –  –  

a
– 3n

 - 0,1791 - 0,0742 0,0742 0,1791 0,1791 0,0742 - 0,0742 - 0,1791

 
Successive steps of wavelet approximation fΨk ( x ) 

for k = 1, 2, 3 have been presented in Fig. 3 - 5.  

First step of reconstruction creates function fΨ1 ( x ) 
as a set of wavelets 
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in which two component wavelets are equal to zero ac-
cording to the Table 1. The resulting waveforms are pre-
sented in Fig. 3.  

Fig. 4 presents the result of the second step of ap-
proximation in which a few (but not all) wavelets f– 3n 
have been added to the function fΨ1 ( x ). Function fΨ2( x ) 
creates a composition of following wavelets 

( ) 373433302322212000ψ2 −−−−−−−− ++++++++= fffffffffxf  
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Finally taking all wavelets for scale coefficients: 
m = 0, m = – 2, m = – 3, the approximating function pre-
sents itself as a set of wavelets: 

( ) 3736313023212000ψ ......
3 −−−−−−− +++++++++= ffffffffxf  

The resulting waveform is presented in Fig. 5. 
 

 
 

Fig. 3. First step of wavelet approximation: 
( ) 0023222120ψ1

fffffxf ++++= −−−− . 

 

 

 
 

Fig. 4. Second step of wavelet approximation: 
( ) 373433301ψ2 −−−− ++++= fffffxf ψ . 

 
 

Fig. 5. Third step of wavelet approximation: 
( ) 3635323123 −−−− ++++= fffffxf ψψ . 

 
Three approximating functions fΨ1 ( x ), fΨ2 ( x ), 

fΨ3 ( x ) and related spectra have been presented below in 
Fig. 6 - 11. The adequate values of THD factors and 
average square errors δ have been also included. 

 
Fig. 6. Waveform of function fΨ 1 ( x ) 

 

 
Fig. 7. Spectrum of fΨ 1 ( x ): THD = 23,06 %; δ=0,0252 
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Fig. 8. Waveform of function fΨ 2 ( x ). 

 

 
Fig. 9. Spectrum of fΨ 2 ( x ): THD = 13,70 %; δ=0,0091. 
 

 
Fig. 10.Waveform of function fΨ 3 ( x ). 

 

 
Fig. 11. Spectrum of fΨ 3 ( x ): THD = 11,44 %; δ=0,0065. 

 
Selected parameters describing features of the wave-

let applications in shaping stepped waveforms have been 
collected in Table 2. Besides average square errors δ and 
THD factors a 

kf
N

ψ
 parameter has been included. It 

denotes a number of different absolute values in one 
period of the stepped waveform. This parameter relates 
directly to the number of demanded DC voltage or cur-

rent sources. The angle α denotes the length of a shortest 
step of the waveform and is equal to a half scale of the 
shortest wavelet applied for approximation. Function fψ0 
signifies one period of a rectangular wave which can be 
treated as the lowest step of approximation. 

TABLE 2: Fundamental parameters of approximating functions 
fΨ 0 , fΨ 1 , fΨ 2 , fΨ 3 , fΨ 4 . 

fΨk  α 
kf

N
ψ

 δψk THD 

fΨ0 π 1 0, 0947 48, 37  %

fΨ1 π /4 2 0, 0252 23, 0 6  %

fΨ2 π /8 3 0, 0091 13, 70  %

fΨ3 π /8 4 0, 0065 11, 44  %

fΨ4 π /16 8 0, 0016 5, 73  %

4. Comparative analysis 

Data gathered in Table 2 summarize the approach to 
wavelet synthesis - the expansion of the function 
f(x)=sin(x) by use of wavelet series. It permits to com-
pare the features of the wavelet expansion with a typi-
cally used form of stepped waveforms in multilevel in-
verters. A cascade multilevel inverter where cells are 
equal each other, will determine a reference object [8]. 
The DC link voltage is divided by number of cells in one 
phase leg of the inverter and each cell is active during the 
same interval of time. So it is assumed here that wave-
forms generated by such an inverter are composed of 
steps of the same voltage and the same length α. The 
angle length α of steps is determined by a number N of 
steps in one period of the output waveform denoted as 
FN. A comparison of parameters permitting to confront 
classic and wavelet waveforms is presented in Table 3.  

Data concerning the standard model are denoted by 
index N while data of the wavelet model - by index ψ. 
Remaining symbols have the following meaning: 
− α min  – the shortest step angle, 
− NDC – number of demanded DC sources, 
− δ – approximation error, 
− THD – total harmonic distortion factor. 

TABLE 3: Comparative parameters of two models of AC wave-
form approximation. 

fΨk ∪ FN α min NDC δ THD 

fΨk FN fΨk FN 
kf

N
ψ NFN  δψk δN fΨk  FN 

fΨ0 FN = 2 π π 1 1 0,0947 0,0947 48,37% 4 8 ,37 %

fΨ1 FN = 6 π/4 π/3 2 2 0,0252 0,0440 23,60% 3 1 ,09 %

fΨ2 F N = 1 2 π/8 π/6 3 3 0,0091 0,0113 13,70% 1 5 ,23 %

fΨ3 F N = 1 6 π/8 π/8 4 4 0,0065 0,0064 11,44% 1 1 ,41 %

fΨ4 F N = 2 4 π/16 π/12 8 6 0,0016 0,0028 5 , 7 3 % 7 , 6 3 %

 
The comparison of parameters confirms that for the 

same number of independent sources the THD factor 
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varies depending on the used model. Wavelet synthesis 
has advantages in relation to the standard solution when 
considering on lower levels of approximation.  

On the second step of expansion the wavelet model 
produces shorter angles α min : α= π / 4 related to π / 3 in 
the waveform FN = 6. and generates waveforms with sig-
nificantly reduced δ and THD. In both models the con-
verter needs two DC sources but in wavelet converters 
the Dc voltages are different. Thanks to dyadic scaling in 
wavelet transform definition (8) it results in elimination 
of third and fifth harmonic in fψ1 spectrum. The THD 
value 23, 06 % reaches almost the lowest level available 
in three level inverters. In Fig. 12 and 13 two spectra of 
considered waveforms are presented: spectrum of the 
waveform generated in a standard three level inverter and 
spectrum of the waveform obtained in the wavelet con-
verter. 

 
Fig. 12. Spectrum of fN(x) for N=6: THD=31,09%; δ=0,0440. 

 
 

 
Fig. 13. Spectrum of: fψ1(x): THD=23,06 %; δ=0,0252. 
 
The next step of approximation permits to obtain 

also better waveforms in wavelet converter than in stan-
dard one. Taking as a criterion the aforementioned pa-
rameters α min , δ and THD factor it is possible to compare 
adequately: π / 8 versus π /6, 0, 0091 to 0, 0113 and 
13, 70  % to 15,23 %.  

Following steps of wavelet approximation bring 
similar results as received in case of considered standard 
stepped waveforms. However it seems that the wavelet 
converter presents better possibilities with regard to con-
trol of fundamental voltage and frequency of output 
waveforms because it is equipped in diversified DC 
sources and can operate with shorter pulses. Although the 
problem is very important in AC drives control but is not 
considered in this paper. 

5. Wavelet converter 

One-phase wavelet voltage converter, generating fψ1 
waveform, consists of two voltage inverters (respectively 
transistors T1÷T4 and T5÷T8) connected in cascade. In 
each phase of the complex converter the component in-
verters are supplied from two independent voltage 
sources: UD1 and UD2. The supply voltages are propor-
tional to the relevant amplitudes of component wavelets. 
For the converter output voltage of 500 V the voltage 
UD1=318 V, and UD2=132 V. The schematic diagram of 
three-level three-phase converter, consisting of three one-
phase component inverters is presented in Fig. 14.  

 
Fig. 14. Three-phase three-level converter as an example of 

wavelet theory application. 
 
The control of such a converter is derived from de-

scribed wavelets model. The inverter consisting of tran-
sistors T5÷T8 generates waveform UF1, corresponding 
with wavelet f00, in each period of output voltage. It 
means that transistors T5 and T8 are switched on in the 
first half of the period while transistors T6 and T7 are 
switched on in the second one. The inverter consisting of 
transistors T1÷T4 generates four waveform UF2, corre-
sponding with wavelets f-2n, in each period of output 
voltage. Because the wavelets in the middle of the output 
waveform have a different phase shift than the other 
ones, the periodical switching pattern is as following: T2-
T3, T1-T4; T1-T4, T2-T3; T1-T4, T2-T3; T2-T3, T1-T4. 

The summing process of the wavelets in cascade  is 
accomplished by serial connection of the outputs of com-
ponent inverters. When the transformer is used as a 
summing node the frequency corresponding with wave-
lets f-2n is 200 Hz. Anyhow due to the phase change there 
will appear pulses of 5 ms duration two times in each 
output voltage period. 

It is worth mentioning, that the power rating of the 
component inverters is not equal. The power of the in-
verter generating the wavelets f-2n (transistors T1÷T4) is 
much lower than the power of the second one generating 
wavelet f00 (transistors T5÷T8). 

The topology of multilevel converter is dependent on 
the method used for its output waveform synthesis. The 
proposed method based on wavelet transform is very 
suitable for cascade converters even so it demands inde-
pendent voltages sources. 
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5. Conclusions 

Advantageous features of wavelets permit to use 
them not only for analysis of processes consisting in 
decomposition but on the contrary in composition of 
signals. The wavelets may be also applied in composition 
of signals and structures in power electronics. The paper 
presents a theory of waveform synthesis based on wave-
lets transform which may be a useful mathematical tool 
in designing of multilevel converter structures and con-
trol strategies. 

The wavelet transform synthesis applied to control 
multilevel converters has good features in relation to 
standard methods. The wavelet converter becomes auto-
matically an asymmetric multilevel inverter because it 
assures better and faster adaptation of output waveforms 
to sine wave shape. For low level of approximation in-
cluding three and four level inverters, the wavelet synthe-
sis proves this feature and permits to obtain better ap-
proximation of waveforms. Furthermore the wavelet 
control method has the following features: 

− low harmonic content of output waveforms, 

− relatively low switching frequency of all inverters, 

− diversified power rating of component inverters, 

− simple converter control circuit. 

The mathematical wavelet model of converter is 
based on discrete inverse wavelet transform. Thanks to 
its universality the model gives an impact for develop-
ment of converter topologies and control strategies. It 
may be developed by incorporating suitable control func-
tions e.g. PWM thus permitting to be applied in AC 
drives. 

The possible application area belongs mainly to 
higher power converters especially in high power unin-
terruptible power supplies, voltage regulators like 
FACTS and UPQC, distributed power generation systems 
with DC sources like photovoltaic or fuel cells with dis-
crete voltage levels. In the sources of this kind there is an 
easy way to group cells to obtain the desired voltage 
levels for the multilevel converter. 
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