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Abstract. Electrical generation based on the use of renewable 

energies is emerging in modern grids. In that way, one of the 

most popular solutions as well in transmission as in distribution 

grids is certainly coming from wind energy. However, wind 

resources on a given location randomly fluctuate with time and 

have thus a major impact on the capacity of the electrical system 

to continuously face the load. In order to evaluate this impact and 

to consequently adapt required reinforcements, Monte Carlo 

simulations are often used. Those approach can be either 

sequential or not. Nowadays, load shifting solutions (storage, 

demand side management…) are practically set in order to adapt 

consumption to time varying generation without involving too 

consequent investments. In that way, sequential approach is 

currently preferred when it comes to long-term planning 

evaluation and adapted time series models are developed to 

characterize wind generation on a given site. The consideration 

of the geographical correlation between those models has been 

recently investigated in some references. This paper proposes to 

complete those contributions by evaluating the impact of wind 

geographical correlation on classical reliability indices such as 

the Loss of Load Expectation (LOLE) or the Expected Energy 

not Served (EENS).    
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1. Introduction 

 
Nowadays, most of the conventional electrical parks are 

still using fossil resources like coal or oil. Those primary 

resources involve the emission of gaseous pollutants like 

carbon oxides (COx) or oxides of nitrogen (NOx). 

Recently, following the Kyoto agreements, a great 

research effort has been made in order to reduce those 

emissions worldwide. In this context, one of the most 

promising alternative resources is certainly wind power. 

Given the fluctuating behaviour of wind and due to several 

operating constraints (cost, reliability…) related to 

electrical systems, it is important to adequately dispatch 

conventional generation and load shifting solutions in 

order to face the requirements of modern networks. 

Practically, in order to undertake adequate investment 

decisions, reliability evaluation can be accomplished 

using deterministic (N-1 criterion) or probabilistic 

methods. Although the deterministic approach presents 

attractive characteristics like direct implementation, it 

involves oversized reinforcements of the electrical 

network. Consequently, probabilistic methods like Monte 

Carlo simulation are usually used for technical-economic 

studies. Practically, there are two ways to execute Monte 

Carlo algorithms: non-sequential and sequential 

techniques. Non-sequential Monte Carlo simulations 

generate a large number of system states to provide 

statistically reliable results but every state is independent 

from each other [1]. In order to take into account the 

chronology of wind speed variations and of load profiles, 

but also to be able to evaluate the benefits arising from 

load shifting solutions, sequential Monte Carlo 

simulations [2-4] must be used as they ensure a realistic 

transition between two successive states for each element 

of the power system. Currently, given the particular 

attention paid to storage means in a context of increased 

dispersed generation, sequential probabilistic approach 

are generally preferred to the non-sequential ones. Based 

on historical data of a particular geographic site, time 

series models are commonly used in sequential Monte 

Carlo simulations as they permit to generate synthetic 

wind speed data which mimic the statistical properties of 

real measurements. Practically, it should be noted that 

generated wind speed data need then to be transformed in 

the power domain using the power curves of the 

considered wind turbines.  

In order to sequentially sample wind speeds, 

AutoRegressive Moving Average (ARMA) models are 

commonly used [5-7] and geographical correlation 

between wind parks can be considered by means of 

Cholesky decomposition [6-7]. Practically, to the best 

authors’ knowledge, the sensitivity of the computed 

reliability indices to the considered geographical 

correlation level between wind parks has not really been 

evaluated yet. Consequently, in this paper, the classical 

LOLE (number of hours per year during which the load 

cannot be met with the available generation) and EENS 

(mean energy not served during periods of lack of 
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generation) indices are computed for an academic test grid 

[8] under extreme wind correlation scenarios (entirely 

independent or correlated). It is then shown that the 

consideration of an adequate geographical correlation 

between wind parks has significant impacts on the 

computed reliability indices.  

 

2.  The Implemented Sequential Monte 

Carlo Simulation 

 

Practically, Monte Carlo simulations can be used to 

estimate reliability indices by simulating the actual process 

and random behaviour of the considered electrical system. 

In theory, those simulations can include system effects 

which may not be possible without excessive 

approximation in a direct analytical approach and can 

generate a wide range of indices within a single study [9]. 

In fact, there are two basic techniques used when Monte 

Carlo methods are applied to power system reliability 

evaluation, these methods being known as the sequential 

and non-sequential techniques [1-4].  

In the present study, a sequential Monte Carlo algorithm 

has been implemented under Matlab® to evaluate the 

reliability indices of interest. Note that the scope of the 

study is limited here to the hierarchical level HL-I 

(aggregated generation and consumption under infinite 

node hypothesis) and only the capacity of the system to 

cover the load is evaluated.  

 

2.A Classical generation and load models 

 

This Monte Carlo simulation theoretically could 

incorporate any number of system parameters and states 

but it has been here assumed that a generation unit was 

only able to reside in one of the following two states: fully 

available and unavailable. The times to failure and times 

to repair for a yearly sequence are obtained by sampling 

the appropriate probability distributions. In this procedure, 

the state residence times are assumed to be exponentially 

distributed [2-3]. 

Concretely, a random variable T has thus the following 

probability density function: 

  t
T etf                                                                  (1) 

 

where λ is the mean value of the distribution. Using the 

inverse transform method [9], the random variable T is 

obtained by: 

 
 


u
T




1ln                                                         (2) 

where u is a uniformly distributed random number over the 

interval [0 1]. 

 

Practically, both operating and repair times of the 

considered conventional 2-state model for the generation 

units are thus exponentially distributed. MTTF and MTTR 

are respectively the mean times to failure and to repair. 

Sampling values of the times to failure (TTF) and to repair 

(TTR) are finally computed following equation (2) as [2]: 

 

 uMTTFTTF  1ln                                         (3) 

 '1ln uMTTRTTR                                          (4) 

 

with u and u’ two independent uniformly distributed 

random numbers over the interval [0 1]. 

From the load point of view, an annual peak load is 

modulated by use of weekly, daily and hourly modulation 

rates provided in reference [8]. 

 

2.B Wind generation model 

 
In this paper, wind speeds are sequentially simulated by 

means of ARMA time series. Theoretically, ARMA time 

series models require working on weak-sense stationary 

processes, i.e. stochastic processes for which the mean is 

constant over time, the variance is finite at each time t, 

and for which the covariance function is independent of 

the time lag [10]. In practice, collected wind speed data 

do not verify these properties: it naturally shows seasonal 

patterns (day/night cycles, seasons), and may contain a 

trend. Therefore, a pre-processing step must be applied to 

the raw data in order to remove such effects. Classically, 

an operation of ‘centralization-reduction’ is conducted to 

that end [11]. The idea is to work on a standardized 

version Xt of the initial wind speed time series Wt, 

obtained by use of the following equation: 

 

t

tt
t

W
X




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                                                                  (5) 

 

with µt and σt respectively the mean and the standard 

deviation of observed wind speed at time t.  

 

Practically, a zero mean ARMA process {Xt} of order 

(p,q) can be defined as follows [5,11]: 
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with {εt} the process of innovations (a Gaussian white 

noise N(0,σε
2
) of variance σε

2
), and with αk and θj non 

zero constants. 

 

After having obtained the standardized wind speeds 

thanks to an adequate sampling on the εt residues, those 

wind speeds are firstly ‘de-standardized’ and afterwards 

converted in generated power. In that way, the following 

power curve is implemented [3]: 

 

cit vWP  ,0   

rtcit vWvWbaP  ,2                                    (7) 

cotrr vWvPP  ,  

cot vWP  ,0  

 

where, vci, vr, vco are respectively the cut-in, rated and 

cut-out wind speeds. Pr is the nominal power of the wind 

generator. 

Parameters a and b are defined as [3]: 
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Finally, note that, in this paper, the time series models 

established for Swift Current and North Battleford in 

reference [5] are considered for the simulation of wind 

generation. 

 

2.C The implemented algorithm 

 

For each simulated hour i, the state of the studied system is 

firstly generated. To do so, the state of each classical 

generation unit is changed if the simulated hour matches 

the associated TTF (if this unit was operating during the 

previously simulated state) or TTF+TTR (if the unit was 

down during the previously simulated state). If the state of 

a classical unit has been changed then a new value of TTF 

(if the unit has moved from down to operating state) or 

TTR (if the unit has moved from operating to down state) 

is sampled for the considered unit by use of equations (3) 

or (4). Wind generation during the simulated hour is 

defined by an adequate sampling on the wind speed time 

series model related to each wind park, the conversion into 

power being made via the associated power curve. The 

load during the simulated hour is obtained by checking the 

associated modulation rates in the predefined annual 

profile. 

After the generation step, each system state is then 

analyzed. Indeed, the available generation (wind + 

classical units) is compared to the load. If the load exceeds 

the available generation then the number of problematic 

states np is incremented. Simultaneously, for each 

problematic state j, the lack of energy Elj is also evaluated 

by making the difference between the actual load and the 

available generation (energy being equal to power in this 

paper as hourly states are considered). 

At the end of the simulation (i = NS, NS being the total 

number of states to be simulated), both reliability indices 

of interest are evaluated as follows: 
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3. Case study and simulation results 

 

The tested grid is based on the one depicted in references 

[3] and [8]. Practically, the peak load is fixed to 560 kW 

and 15 conventional generation units are considered (10 

units of 32 kW and 5 units of 60 kW). Their MTTF and 

MTTR are identical and respectively imposed to 2940 

h/year and 50 h/year. Two wind generators (20 kW each) 

are added to the system and, as already mentioned in 

section 3, are respectively based on Swift Current and 

North Battleford data. The same power curve is applied for 

both wind parks with vci = 3 m/s, vr = 12 m/s and vco = 25 

m/s. 

Two extreme correlation scenarios are implemented. The 

first one considers an entire correlation between the 

simulated residues εt of the wind speed time series models 

and the second one is based on an entire independence 

between those residues. 

LOLE and EENS indices are computed for both 

scenarios. In that way, the number of simulated years NS 

of the Monte Carlo process is decided by comparing the 

coefficient of variation β of each index to a fixed 

tolerance threshold (β < 1% when computed over the last 

500 years of simulation) [2]: 

 

 
 LOLEE

LOLEV
LOLE                                    (12) 

 

 
 EENSE

EENSV
EENS                                     (13) 

 

where, V and E are respectively the variance and the 

expected value of the estimated index. 

 

In the present case, the convergence threshold is reached 

for NS = 4000 years. Figures 1 (a and b) and 2 (a and b) 

respectively give the evolutions of LOLE and EENS 

indices for both investigated scenarios. By analysing the 

values of those indices, it can be observed that, when the 

convergence is reached, the LOLE index computed in the 

“entirely independent” case (LOLE = 1.0855 h/year) is 

less severe than the one obtained in the “entirely 

correlated” case (LOLE = 1.1403 h/year). The same 

observation is made for the EENS index as this index 

increases from 18.8 kWh/year (in the “independent 

case”) towards 19.5 kWh/year (in the “correlated” one). 

The degradation of the computed indices in the “entirely 

correlated” scenario can be explained as follows. 

Practically, in that case, wind generation is 

simultaneously reduced for both considered units and, 

consequently, states of lack of available generation are 

more severe compared to the ones recorded in the 

“independent case”. Indeed, in this last scenario, a 

smoothing of the available wind generation is observed 

as the power decrease of one generator is not necessarily 

observed for the other one. 

In order to have a better idea of the sensitivity of the 

reliability results between both simulated extreme 

geographical correlation scenarios, the relative variations 

of the recorded LOLE and EENS values are also 

computed and respectively reach 5.05 % and 3.72 %. 

This result demonstrates the interest of taking into 

account the existing geographical correlation between 

wind sites in order to found investments decisions on 

reliable values of the computed indices. 
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Fig.1. Evolution of the computed LOLE for different simulation 

lengths: (a) entirely correlated case, (b) entirely independent 

case 
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Fig.2. Evolution of the computed EENS for different simulation 

lengths: (a) entirely correlated case, (b) entirely independent case 

 

4. Conclusions 

 

In this paper, a sequential Monte Carlo simulation tool was 

implemented and wind generation was modelled by means 

of time series. Two extreme geographical correlation 

scenarios were investigated in order to evaluate the impact 

of the correlation level on the computed reliability indices. 

The study was here conducted on an academic test case [3, 

8] and two classical HL-I indices (LOLE and EENS) were 

evaluated. It was shown that both considered extreme 

correlation scenarios could lead to relative variations of the 

collected indices from several %. Consequently, the 

interest of taking into account adequate geographical 

correlation between wind sites was pointed out in order to 

undertake reliable investment decisions.    
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