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Abstract.    The paper proposes a study of the observability of a 
2-branch Double-Layer Capacitor (DLC) mathematical model, 
derived from its well known 2-branch nonlinear physical model. 
The study is a basis to perform the diagnosis of the system by 
employing observers. The analysis is carried out by means of the 
sufficient rank condition of the observability matrix for nonlinear 
models. It is shown that the rank condition is satisfied everywhere 
in the two-dimensional state space, except for a characteristic 
curve in the plane defined by the two state variables. This curve is 
usually outside the usual range of operation of Double-Layer 
Capacitors available on the market.  Finally, it is shown that the 
above curve is sensitive to the resistance of the branch containing 
the nonlinear capacitance, i.e. the faster branch. In particular, 
increasing this resistance can cause the curve to intersect the 
region of usual range of operation of a DLC. 
 
Keywords.     DLC, SC, supercapacitor, observability, state-space, 
diagnosis. 

List of variables 
 

Variables(s) Description Dim. 
 dI  Input current (const.) A 
 1,aC  Const. capacitance (branch-1) F 
 2,aC  Const. capacitance (branch-2) F 
 1k  Constant F/V 
  1 1 1x V V t   State variable (branch-1) V 
  2 2 2x V V t   State variable (branch-2) V 
 1 1 /V dV dt  t-deriv. of 1V  (branch-1) V/s 
 2 2 /V dV dt  t-deriv. of 2V  (branch-2) V/s 
 1, 1 1bC k V  Nonlinear capacitance F 
 1 1, 1,a bC C C   Complete capacitance F 
 1 1 1Q C x  Charge (branch-1) C 
 2 2 2Q C x  Charge (branch-2) C 
  1 1i i t  Current (branch-1) A 

  2 2i i t  Current (branch-2) A 
  3 3i i t  Current (branch-3) A 
 u  Input of the system  
 y  Output  
      , ,f x g x h x  Smooth functions  
  O x  Observability Matrix  

 
 
1. Introduction 
 

Supercapacitors (SC) are widely recognized as fast and 
efficient energy storage solutions, especially in power 
applications thanks to their power densities (typically larger 
than the ones reachable with batteries) and their energy 
densities (10 to 20 times larger than in electrolytic 
capacitors). Among them, the so-called Double-Layer-
Capacitor (DLC) is available on the market with rated 
voltage of about 2.3 V and capacitance values up to 1500 F; 
anyway, higher voltages can be obtained by suitable series-
parallel combinations of such single DLC units [1].  

DLCs use polymer foils, which are able to offer a great 
density of electric charges; unfortunately, this characteristic 
implies an equivalent model more complicated than the 
classic capacitor model. In the literature, models based on 
electrochemical laws [2]-[3], equivalent electrical circuits 
[4]-[5], and model based on impedance measurement [6]-
[7], are proposed. 

Among these models, the simplified physical model 
proposed in [4] it is sufficient for practical engineering 
applications, over the range of some tens of minutes [1]. 

However, due to the high energy stored during operation, 
a diagnostic system is required for the system reliability, 
able to recognize the behavior of the SC in terms of the 
stored charge, based on electrical quantities measured at the 
SC terminals. As well known, in order to achieve this 
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objective, the observability of the SC model must be 
studied, which is not an easy task, since the SC model is 
nonlinear. 

This paper, aims at the observability of a DLC, whose 
physical model consists of two parallel-connected branches: 
the former consists of a parallel connection of a voltage 
dependent capacitor and a conventional one, in a series with 
a resistor, the latter branch consists of a series connection of 
a linear resistor and a linear capacitor.  

More precisely, a package consisting of several SC cells 
parallel and series connected between them is considered, 
with the aim of obtaining the desired values of current and 
voltages required in the practical applications. However, 
assuming that all the cells are identical, the physical scheme 
of the whole package coincides with that of a single cell. It 
is also assumed that the parameters of this cell have been 
already identified using, for example, the approach 
described in [12]. 

The study is based on the sufficient rank condition of the 
observability matrix for nonlinear models. In the following, 
it is demonstrated that the rank condition is satisfied in the 
whole two-dimensional state space, except for a non-
observability curve in the plane defined by the two state 
variables. By doing this, it is possible to highlight that the 
observability is satisfied for the considered DLCs available 
on the market. Finally, it is shown that a strong increase of 
internal resistance can cause the non-observability curve to 
enter inside the region of the usual range of operation. 

 
2. Description of the Adopted Model 
 

In this section, the fundamentals of a DLC operation are 
presented; on this basis, the physical model is discussed 
and, finally, the state-space model is obtained. 
 
A. Model presentation 
 

A DLC is quite different from a conventional electrolytic 
capacitor: indeed, it exhibits virtual plates that are actually 
two layers of the same substrate (see figure 1), realizing the 
phenomenon of the double-layer-effect. Their 
electrochemical properties, the so-called Helmholtz [9] 
"electrical double layer", result in the effective separation of 
charges despite the infinitely thin (about nanometres) 
physical separation of the layers. The material widest used 
is the “activated carbon” [10]. 

 

 
 
Fig. 1.   A Double-Layer-Capacitor scheme. 

The absence of need for a great layer of dielectric, and the 
porosity of the used material, permit plates to be packed 
with much larger surface area in a given volume, resulting 
in high capacitances and in practical-sized packages. In an 
electrical double layer, each layer by itself is quite 
conductive, but at the interface, where the layers are 
effectively in contact, no significant current flows between 
the layers. 

The double layer can tolerate only low voltages, which 
means that electric double-layer capacitors, if rated for 
higher voltages, must be made up of series-connected 
DLCs, like series-connected cells in higher-voltage 
batteries. In general, DLCs have much higher power density 
[8] than batteries. 

 
B. Model finding 

 
A multi RC-branch circuit is made up of a certain 

number of RC-series branches; in DLC case, recalling that 
τi=RiCi [11], every branch simulates a separated behavior 
during time. 

The more common models adopted in literature are the 2-
branch [4]-[12] and the 3-branch [13]-[1] ones; the first, 
being simpler, leads up to less complex computations; the 
second, although more complicated, approximate the 
behaviour of a real DLC better. However, for power 
applications, a simpler 2 branches model with a voltage 
dependent capacitor series connected with a resistor and a 
series of a linear resistor with a linear capacitor is adopted 
[1]-[6]. For this reason, in this paper, only the 2-branch 
model is studied. 

Figure 2 shows a schema of the DLC equivalent circuit. 
It can be noticed that the first branch contains the voltage 
dependent capacitor; in particular, it is modeled by a 
constant term, parallel connected to a linear voltage 
dependent capacitor. This implies a nonlinearity that 
justifies the observability study. In addition, the voltage at 
the capacitor terminals is a state variable, but it does not 
coincide with the voltage at the external terminals due to the 
presence of the series resistance. 

 

 
 
Fig. 2.   Schematics of a DLC equivalent circuit. 

du I  is the input current; 1 2 3, ,i i i  are the currents; 

1 2 3, ,R R R  are the resistances; 1, 2,,a aC C  are the linear 

capacitances; 1,b 1 1C k V  is the nonlinear capacitance; 

1 2 3 1, 1,b 2,, , , , ,a aC C CR R R  make the DLC; 

1 2 3y y y y   is the output voltage. 
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C. Mathematical model of a DLC cell 
 

It is important to bear in mind that it must always be: 
 
 1 20 , 0V V    (1) 
 
This condition is imposed by the structure of the SC for 

which the applied voltage must always be positive. The 
upper limit of the state variables is given by the rated 
voltage of the SC.  Now, by a simple analysis, it is possible 
to find the mathematical equivalent model starting from the 
following equations: 

 
 

 1 1, 1 1

2 2,

branch-1
branch-2

a

a

C C k V t
C C

 


(2) 

2
1 1 1 1, 1 1 1

2 2 2 2, 2
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a

a

Q C V C V k V
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1
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2
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a d

a

dQ C k V C
dV
dQ C
dV

  


(4) 

1 1
1 1, 1

1

2 2
2 2,a 2

2

branch-1

branch-2

d
dQ dVi C V
dV dt
dQ dVi C V
dV dt

  

  




(5) 

 
 
 
where 1,dC  is the differential capacitance of first branch. 
 

Now, placing    1 2 1 2
T Tx x x V V  , it is easy to 

verify that the mathematical model results as: 
 

 
   
 

x f x g x u

y h x

  





  (6) 

with: 

  

2 3 3

1, 1, 1

23 1 3

2,a 2,a

1 1

d d

R R R
C C x

xR R R
C C

f x
 

 
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  
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1,

1 3

2,a

1
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R R
C

R R
C

g x




 
 
 


 






  (8) 

   12 3 1 2 31 2

2

xR R R R RR R uh x
x  
  

  
  




  (9) 

and: 
 2 3 1 3 1 2R R R R R R      (10) 

3. Observability 
 

In this section, the observability matrix is calculated; 
therefore, imposing the observability condition, the 
operating region – in which the system is observable – is 
identified.  

As already said, the study the observability is useful for 
diagnostic purposes, since it permits to deduce the charge 
levels Qi, and then the status of operations of SC, by means 
of the knowledge of the states ix .  

In particular, from the voltage on the two capacitors (see 
figure 2) it is possible to calculate the stored charge. During 
the normal operation, the voltage at the capacitor terminals 
must be coherent with the capacitance and the flowing 
current. If deterioration occurs, the capacitance value and, 
consequently, the stored charge will diminish. 

In order to study the observability of the model system, it 
is necessary to determine the observability matrix and 
verify the rank condition; if it is satisfied the model is 
observable, contrarily the observability is not guaranteed 
[14]-[15]. The observability matrix is given by: 

 

 

 

 

1
2

3 1 4 5 6 9 10
2

7 1 87 1 8

2

1 2 1  

f

dh
O x

dL h

x
x

x
x
x x



    
  



  

 
  
 

 
 

 

   

 


  (11) 

with: 
   1 2 3R /R    

   2 1 3R /R    

   2 2
3 1 3 14 RR k   

   2
4 1 3 1 1, 3 1, 14 /a aRR k C C k    

    2
5 1 3 1 2, 3 2, 12 / 2a aR k C C kR      

    2
6 3 1, 2 2, 1 3 1, 2 3 2,a a a aR RC R C CR RC R      

   2
7 1 2,2 ak C   

   2
8 1, 2,a aC C   

    9 1 3 1 1 32 kR R R R    

   2
10 1, 2,a aC C   

 
According to [16], the model (6) is observable if the 
determinant of matrix  O x  is different from zero for 
all x . This determinant is given by: 
 

 

  

 
1

2
11 1 12 13 14

2
1

2

5 6

det

 

O x

x
x

x x   

 

  






  (12) 

with: 
     2 2

11 1 3 14R R k     
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       2 2 2
12 3 1 1 1, 2 3 2 3 2,2 2 a aR k R C R R R R C       

     2 23 3 ,1 1 12 aR R CR k    

      1, 1, 2 2,
2

14 3 1a a aR C R C R C     

 
Eq. 12 is different from zero for all x  such that: 

 2
2 1 1x ax bx c     (13) 

where a, b, and  c are: 
       1 2 2,2 / aa k R C  

         2
1 1, 2 3 2, 1 2 3 2,2 /a a ab R C R R C R R R C   

         1 1 1, 2 2, 2 2,/a a ac R R C R C R C   

 
The states in which the rank condition is not satisfied 
belong to a non-observability parabola, defined as: 

 2
2 1 1x ax bx c     (14) 

 
On this curve the observability is not assured since (14) 

represents only a sufficient condition. Therefore, for any SC 
described by the proposed model, the observability can be 
studied by drawing the parabola described by eq. (14), on 
the plane defined by the state variables and verifying that 
the trajectory of the operation point does not cross the curve 
defined by (14). 
 

 It should be noted that the coefficient a is always greater 
than zero, which implies that the parabola concavity is 
upwards.  
 

A. Operating Conditions 
 

The operating region of a SC is defined by its rated 
voltage. In particular, it is a rectangle on the plane defined 
by state variables whose boundaries are equal to the rated 
voltage of the SC. The parabola (14) is identified by its 
characteristic points as the intersection with the axes and 
the vertex. It should not be inside the DLC working region.  

Hence, best conditions for the observability are: a 
parabola completely on the right side of the operating 
region or, alternatively, a parabola inside which the DLC 
working region lies. 

With reference to figure 3, some characteristics points are 
defined. They are the intersection points with axis x1=0 P1 
and P2, the intersection with axis x2=0 P3 and its vertex PV. 
 

 
 

Fig. 3. A generic parabola and its characteristic 
intersection points: P1 and P2 with axis x1=0, P3 with 
axis x2=0, and its vertex PV.  

Placing that 1, 2,N N NV V V  , some simple calculations 
allow, in the scond case, the contraint to be identified as:  

 
 22 4

2N

b ac b
V

a


   (15) 

with the discriminant: 
 2 4a ac     (16) 
  

4. DLC Examples 
 

On this section, some numerical examples are presented. 
The characteristic parabola is calculated for some SCs 
available on the market.  Note: values are approximated, 

3R  is expressed in k , “E.” means Epcos™ [4], “M.” 
means Maxwell™ [4], [12].  

 
Table I.   DLC parameters and values sets for the 
Epcos ones and for the Maxwell one. 
 

 
1R  2R  3R  1,aC  2,aC  1k  

E. 110 F (a) 0,01 17,5 5   89 14 29,1 
E. 110 F (b) 0,01 18,3 5   84,7 13 27,4 
E. 200 F (a) 0,009 8,8 5 158 27,6 56,2 
E. 200 F (b) 0,009 7,8 5 152,7 30,8 58,7 
M. 350 F (a) 0,005 5,5 2,5 232,5 43,2 89,9 
M. 350 F (b) 0,004 7,8 2,5 234,7 30,6 82,2 
E. 600 F 0,003 3,1 2,5 454,5 77,4 176 
M. 83 F 0,01 11 1,1 39,73 11,8 0,9 

 
Substituting values of Table I in (14), Table II and Table 

III are found (approximate values); Table II shows values of 
a b c for all DLCs, Table III shows the equations and the Pi 
and PV points. The values are also plotted in figure 4, figure 
5, figure 6, in which all Pi and all PV satisfy constraints 
given by eqs.15-18. Furthermore, each parabola does not 
touch real operating regions. Thus, it can be claimed that all 
studied DLCs 2-branch models are observable. 
 

All parabolas are shown in figure 4; it can be noted that 
the first seven DLCs are quite similar to each other, and 
significantly different from the last one. 
 

 
 

Fig. 4. Characteristic parabolas defining the 
observability region. 
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Table II.  Coefficients a , b  and c  of each DLCs. 
 

 a  b  c  
E. 110 F (a) 4.25  1728  2 655  
E. 110 F (b) 4.18  1737  2 699  
E. 200 F (a) 4.08  978.9  1385  
E. 200 F (b) 3.82  850.7  1115  
M. 350 F (a) 4.16  1146  1491  
M. 350 F (b) 5.37  1740  2 497  
E. 600 F 4.56  1076  1395  
M. 83 F 0.15  1090  24161  

 
 
 

Table III.  Parabola equations and its characteristic 
points obtained for each DLC. 
 
 Equations     /   1P ,  2P ,  3P ,  VP  

 1P  2P  3
3 10P   310VP   

E.110 
F (a) 

2
2 1 14.246507 1728.447 2 654.953x x x     

 1.5;0   408.6;0   0; 2.6   0.2; 176  

E.110 
F (b) 

2
2 1 14.183435 1737.109 2 699.373x x x     
 1.55;0   408.6;0   0; 2.7   0.2; 180  

E.200 
F (a) 

2
2 1 14.082322 978.9151 1384.849x x x     
 1.4;0   241.2;0   0; 1.4   0.19; 59  

E.200 
F (b) 

2
2 1 13.81571 850.7151 1114.561x x x     
 1.3;0   224.1;0   0; 1.1   0.11; 47  

M.350 
F (a) 

2
2 1 14.164707 1146.061 1490.954x x x     
 1.3;0   276.5;0   0; 1.5   0.14; 79  

M.350 
F (b) 

2
2 1 15.369844 1740.077 2 497.262x x x     
 1.43;0   325.5;0   0; 2.5   0.16; 140  

E.600 
F 

2
2 1 14.562295 1076.478 1394.961x x x     
 1.3;0   237.2;0   0; 1.4   0.12; 63  

M.83 
F 

2
2 1 10.1520386 1090.288 24161.45x x x     

 22.1;0   7193.2;0   0; 2.4   3.58; 1914  
 

 
   A zoom of the parabolas near P2 points is shown in figure. 
5; it is important to notice that all parabolas pass through 
the first quadrant for values of x1 greater than 241.2 V, 
which is really greater than real possible values of x1  (just 
some volts).  

Figure 6 shows a zoom in the neighbourhoods of the 
origin of the state plane. It can be seen that the parabola 
never crosses the working region in the first quadrant, but 
touches just 2nd, 3rd and 4th quadrant.  
Finally, it can be argued that the studied SCs, within the 
operating values of the states, are always observable. 

 

 
 

Fig. 5. Each right arm of all parabolas showing that they are 
all outside the operating region. 

 
 

 
 

Fig. 6. Left arm of all parabolas showing that they do 
not cross the first quadrant. 

 
5. Parametric Analysis 
 

The observability analysis proposed in section IV has 
shown that during the normal operating conditions, all the 
considered SCs are observables.  

By observing the model of figure 2, it is possible to note 
that the voltage at the SC terminals differs from the voltage 
at the nonlinear capacitance for the presence of the series 
resistance R1. As in [12], the value of R1 is given by 
manufacturer; if necessary, a possible method of 
computation is the amperometric measurement. Since this 
parameter is the cause by while the terminal voltage is 
different from the voltage at the terminal of the capacitance 
C1, it is useful to investigate if an increase of R1 can affect 
significantly the observability. To this aim, a fictitious 
increase of R1 has been introduced. In particular, with 
reference to SC Epcos mod. A, it has been increased up to 
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reach the working region. It occurs when R1=0.55 Ω. It 
corresponds to the condition: 2,min 1, 2.3 VNP V  . 

Results are collected into table III and drawn in figure 7. 
Only 1st quadrant is considered, because of it contains DLC 
operating region (other quadrants are drawn in grey color). 
Overcoming 1R , parabolas go through DLC operating 
region (black diagonal lines) and its are drawn in red color; 
here, nothing can be said about observability. 
 

 
 

Fig. 7. Observability for green regions, nothing can be 
said for observability inside red region. Black diagonal 
lines are DLC’s operating region; gray curves are not 
of interest; green curves are of secure observability; 
for red curves, for x1   (0:241.2), nothing can be said.  

 
From the above presented analysis, it can be deduced that, 

during operating conditions, the SC is observable. If 
degradation leads to an increase of R1, it can be admitted 
until the characteristic parabola does not reach the operating 
region. A further increase of R1 could imply that the locus 
of operating point crosses the characteristic parabola, in this 
case the observability is not guaranteed. 

The internal resistance variations, during normal 
operation, do not affect the observability. As a matter of 
fact, it has been demonstrated that the internal resistance 
decreases while the DLC temperature increases; moreover, 
high operating frequencies cause a lessening of the same 
system [16] [17].  

For example, for the Maxwell BCAP350 F DLC, the 
equation (20) has been found: 

 
 20

20
1

2

Tk T T

T
eR R
    (17) 

where: TR  is the resistance depending on temperature,  

20R is the resistance at 20 C , T is the surrounding 
temperature, Tk  the temperature coefficient 
( 0,0025Tk C  ). 
   For a temperature raise from 20 ° C to about 200 ° C (see 
figure 7), the increase of RT exceeds the critical value 
( 0,55  ) for which the non-observability parabola 
intersects the DLC operating region. 

On the other hand, an anomalous increase of the 
temperature reduces the life of the cell, because of 
electrolyte degradation and of separator instability. This 
critical condition can be monitored by the internal 
resistance estimation. 

Table IV suggests a general procedure before performing 
the diagnostic. For a given SC, the non-observability 
parabola must be calculated. Then, if it does not cross the 
operating region, the upper limit of R1 corresponding to a 
critical condition in which the observability cannot be 
guaranteed must be calculated.  
 

Table IV.   Parametric analysis of “Epcos-200F-(a)”; 
only green region grants observability. 
 

R1     /     Equation     /     P1 , P2 , P3 , PV  
1 0.01 1 0.01R      

2
2 1 14 979 1384.85x x x    1 1.5;0P   

 2 241.2;0P   2 -10; 384.8P   119.9; 58VP k  

1 0.01 63 0.63R              critical 
2

2 1 14.34 3.5 14.9x x x     1 1.5;0P   

 2 02.3;P   2 -0; 14.9P   0.4;0.12VP  

1 0.01 225 2.25R      
2

2 1 16.14 15.3 7.93x x x     1 1.75;0P   

 2 -0. 074;P   2 30;7.9P   1.24; 9.9VP    
 

During normal operation, the internal resistance could be 
estimated by an observer; particular care has to be taken 
when the value of R1 overcomes its critical value. 
 
6. Conclusions 
 

In this paper a study of the observability of a 2-branch 
Double-Layer Capacitor (DLC) model is proposed. The 
study is a basis to perform the diagnosis of the system. A 
nonlinear DLC model, suitable for power applications, is 
used. A mathematical model – placed in canonical form – is 
developed. 

The proposed method can be applied to all SC whose 
model is composed of two parallel-connected branches in 
which the former is formed by a voltage dependent 
capacitor series connected with a resistor and the latter is a 
series of a linear resistor with a linear capacitor. 

The analysis on some commercial SCs has demonstrated 
that all the 2-branch DLCs studied, are observable. On the 
other hand, a degradation leading to an increase of the 
series resistance of the nonlinear capacitor can jeopardize 
the observability of the system. 

The method requires, for efficient operation, an 
estimation of the internal resistance that could be 
performed by a dedicated real-time observer. 
 

Appendix A 
 

For the model (6), assuming that ( ) : n nf x   , 

( ) : n ng x    and ( ) : nh x    are smooth vector 
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fields, the observability matrix of the nonlinear model is 
given by: 

 
f

dh
O x

dL h
 

  
 

, 

 
where dh  is the gradient of h , and fdL h  is the Lie 
derivative of h  along f , defined as: 

f x
L h fd h


 . 

In the case under study, the rows of the matrix O  are given 
by: 

 2 3 1 2
1 2

R R R Rdh  
 

 
  
 

                          

 

2
3 1 4 1 2 15 6 9 10

2
7 1 87 1 8

  
f

xdL h
xx

x x x     
  

    
  

  
 

 
Where all 1  are defined in eq. (11). 
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