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Abstract. The observable battery parameters like terminal 

voltage, current and temperature couldn’t give an accurate idea 

about state of charge (SOC) and state of health (SOH), it is why 

large number of techniques and algorithms have been proposed to 

predict the internal parameters (internal resistances Rint, 

capacitance,   and open circuit voltage VOC) which are known as 

SOC and SOH indicators. In this paper we use an adaptive 

extended Kalman filter (AEKF) to estimate on-line the internal 

parameter and SOC based on Thevenin equivalent circuit model. 

In order to identify the real energy available in the battery, the 

AEKF algorithm is coupled with Fuzzy modelling of the nominal 

battery capacity (Cn) that depends on the debited battery current.  

Experience shows that our approach contributes accurately to 

estimate the SOC.    
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1. Introduction 

 
Divers fields are today depending of batteries “e.g., stand-

alone photovoltaic systems (PV), cellular phone, 

spacecraft, Uninterruptable Power Supplies (UPS) and 

Electrical vehicle (EV)…”. The PV system with battery as 

mean of storage it could be an ideal substitution to the 

traditional internal combustion system in cars which 

pollutes our world. The weak points remaining to bascule 

from the technologies depending of the fossil energy as 

power source to a pure electrical system are the large 

uncertainties of dimensioning, gauging and aging the 

battery. Different methods [1,4,5] have been carried out to 

resolve these problems based on dynamic models 

associated to several parameters (internal resistances Rint, 

capacitance and open circuit voltage VOC) that reflect 

faithfuly the state evolution of the battery witch is 

interpreted by SOC as the cyclic lifetime criterion and 

SOH as the global lifetime criterion. In pervious work we 

have used a standard Kalman filter estimator to predict 

these parameters; however a conventional Kalman filter 

is vulnerable to follow the evolution of the state of 

battery at long term due to the environmental conditions 

variations, the evolution of sensors in acquisition setup.   

The Kalman filtering is an optimal estimation method 

that has been widely applied in real-time dynamic data 

processing [2]. A Kalman filter estimates the state of a 

dynamic system with two different models namely 

dynamic and observation models. The dynamic model 

describes the behaviour of state vector, while the 

observation model establishes the relationship between 

measurements and the state vector. Both models are 

associated with statistical properties to describe the 

accuracy of the models. For many applications, the model 

statistic noise levels are given before the filtering process 

and will maintain unchanged during the whole recursive 

process. Commonly, this a priori statistical information is 

determined by test analysis and certain knowledge about 

the observation type beforehand. If such a priori 

information is inadequate to represent the real statistic 

noise levels, Kalman estimation is not optimal and may 

cause to an unreliable results, sometimes even leads to 

filtering divergence.  
In this work our approach is to estimate SOC based on a 

dynamic model of the battery using the AEKF [3], in 

parallel this estimator is trying to determine the statistic 

parameters and adapts the varying of the noise in 

dynamic system and measurement models; The Fuzzy 

logic is carried to model the evolution of the Cn in 
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function of different C-rate that affect considerably the 

possible debited or the injected energy.    

To validate our algorithm a Valve regulated lead-acid 

battery design (VRLA) manufactured by YUASA under 

reference NPL24-12I (12V/24Ah) is used[8];  her design 

differs from the conventional flooded lead-acid battery 

(FLA) design by containing only a limited amount of 

electrolyte immobilized in a gel (‘‘starved’’ electrolyte),   

in cases of overcharge and deep-discharge. 

 

2. Battery modelling  
 

The dynamic system model based in the Thevenin 

Model [3, 4], shown in Fig.1. It consists on an ideal battery 

represented by Electro motive force (EMF) appeared as an 

open-circuit voltage (VOC), two different internal 

resistances RC and RD modelling the energy losses 

respectively in charge and discharge, the apparent internal 

resistance (Rb) and The polarized capacitance (CP) the two 

last parameters made our model more representative to the 

battery's phenomena because they interpret some dynamics 

aspects in our system. The difference between charge and 

discharge in the chemical reactions and the physical 

phenomena imply RC and RD. The implementation of RC 

and RD resistances together allows uninterruptible 

computing “i.e., on-line” of the parameters of our battery.  

The «Cp» presents the chemical diffusion in the battery; its 

value depends from SOC, temperature and the technology 

design of battery. The dynamic system model, in Fig.3 is 

presented in differential equation as fallow.  
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In equation (2) we present the measurement model  

Vt = Vp – Rb Ib                   (2) 

 

In discharge VP ≤ VOC and Rint = Rd, in Charge VP ≥ 

VOC and Rint = Rc. Note also; Ib is instantaneous current of 

battery, with positive sense during the charge and negative 

in the discharge.  

 

 

 

 

 

 

Figure .1.  Run-time Battery dynamic Model [4, 6] 

3. Identification of SOC criterion  
 

SOC is a relative quantity that describes the ratio of the 

remaining capacity to the nominal capacity of a battery [7]. 

In Fig.3 the SOC is represented as voltage bounded SOC 

between [0,1] zero for fully discharged and one fully 

charge. From all the previous, we could write SOC as 

function of instantaneous capacity (Qt0), nominal capacity 

(Cn) and Ib: 

nCdtiOC /) -Q( S
t1

t0
bt0     (3) 

We rewrite (10) as recursive form: 

nkk CTiSOCOC /) (- S b1  
   (4) 

From divers battery literature we note that the VOC is 

faithfully related to SOC with the conventionel consept 

as described bellow.   

Off-CutOC V  SOC   V       (5) 

β is taken as constant value in the functional range of 

battery charge and discharge. VCut-Off is the terminal 

voltage at the end of the knee of discharge, the point at 

which the voltage leaves the linear form  and begins to 

decline rapidly |dVt/dt| increase rapidly, generally this 

value is given by the constructor of the battery as limit of 

discharge in order to avoid any degradation caused by a 

deep discharge.  

As first solution to identify the SOC, we could use (5) to 

compute it directly basing on the estimated VOC. Another 

approach adapted in this paper, is to add the SOC in the 

state vector as a parameter to estimate; by this choice we 

will integer, in the dynamic system, another controlled 

parameter evolution formulated by the equation (4). the 

gain are attainted by, the direct Kalman gain corrections 

of SOC during the estimation and the controlled 

evolution of SOC by IB in consequence we approach to 

an accurate estimation of SOC and avoid the divergence 

at cycling profiles at long service.   

4. The implementation of AEKF estimator   
 

To estimate the internal parameters of our battery we 

will use the dynamic model given in Fig.1 in order to 

develop an algorithm based on the adaptive extended 

Kalman filter (AEKF), the first step is  to rewrite (1) as 

state equations including the estimate parameters (VOC, 

RD, RC, Vp, C,  Rb), the cost function is controlled  by 

(Ib). We proceed to variables change in (1) (i.e., x1 = Vp, 

x2= 1/RD, x3 = 1/C, x4 = Rb, x5 = VOC) the model 

becomes:  

x1
  =   ,13523321

vI xxxxxxx b         

x2   = 2
222

vx               

 x3   = 3
333

vx     (6) 

x4   = 4
444

vx   

x5   = 5
555

vx   

   

vi is the model noises vector (white noise ), zero-mean, 

mutually uncorrelated. The parameters x2, x3, x4, x5 are 

considered as random variables with unknown statistical 

evolution. At the end we obtain a nonlinear system 

described by a differential equation in (6), written as:    

)(tx  = f( x(t),t) + u(t) + v(t)  (7) 

The dynamic model equation (7) interprets the nonlinear 

evolution of the space-state vector; it will be linearized to 

be exploitable by the standard Kalman Filter as written in 

(8). The input drive u(t)=[Ib 0 0 0 0]T is integrated in the 

system model evolution matrix F(t). 

 

)(tx  = F(t) x(t),t) + v(t)    (8) 
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with

 

α11=- x2x3, α12=x3(x5- x1), α13=x2(x5- x1)-Ib,  

α14=0, α15= x2x,  

 

The solution of (8) is:  

x(t)= x(t0)exp( 
t
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dttF
0
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In equation (9), the continuous space-state system present 

the evolution of the estimates parameters in x(t) toward 

x(t0) in function of the phase applied in battery (Ib in 

charge or discharge). To obtain the discrete-time state 

system we consider t0 = tk and  t = tk+1 :  
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We rearrange (10) to obtain the standard discrete-time state 

system resolved by the standard EKF estimator algorithm:  

x(k+1)= Φd(k)x(k) + θd(k)       (11) 
 

The sampling chosen for battery data acquisition [tk, tk+1] is 

small relative to battery measurements evolution. It is 

valid to assume F(k) ≈  F(t)  et  Q(k) ≈ Q(t)  / t [tk,tk+1]. 

From this assumption, we obtain: 

Φd(k) = e
tF(k)

 and  θd(k) = Φd(k)Q(k) Φd
T(k) Δt 

 

As announced in the begging we include the SOC in state 

vector; inconsequence Xn vector becomes x1 = Vp, x2= 

1/RD, x3 = 1/C, x4 = Rb, x5 = SOC. From (05) and (11) the 

state model evolution became:  

 x(k+1)= Φd(k)x(k) + B(k)u(k)+θd(k) (12) 

 

Φd(k) = e
t(k)F '

   

 

α12=x3(β SOC + VCut-Off - x1),  

α13=x2(β SOC + VCut-Off - x1)-Ib and α15= β x2x,  

B(k) = [0 0 0 0 -t/Cn] is the drive transition matrix with 

u(k) = Ib the control vector.  

From equation (02) we obtain the measurement model 

illustrated in equation (14) witch gives the dependence of 

state variables x(k) to the observable parameter Vt.   

 

z(k) = H(k)x(k) + w(k)   (13) 

 

With H(k) = [1 0 0 -Ib 0], Measurement/state coupling 

matrix, w(k) is measurement output noise supposed to be a 

Gaussian white noise. The v(k), w(k) and x(0) are 

uncorrelated variables with respectively Gaussian 

distribution with zero mean (r, q) if we would like to apply 

the standard extended Kalman filter (EKF).  

To robustly handle uncertainty in the standard 

deviation of the sensor and process noises, an adaptive 

filter (AEKF) can be applied that identifies recursively the 

value of Q or R. The basic premise is to use the 

measurement (q) and state (r) residuals to modify the 

parameter values for sensor and process noise. The AEKF 

algorithm of the linearized system described by (12) and 

(13) with unknown time-variant noises is expressed as: 

 

Prediction:  

 

)1(ˆ)()()1(ˆ)1/()1/(ˆ  kqkukBkxkkkkx d  (14) 

)1(ˆ)1/(ˆ)()(ˆ  krkkxkHkz    (15) 

 

The variance of the predictive state can be written as 

follows: 

)1(ˆ)1/()1()1/()1/(  kQkkkPkkkkP d
T

d  (16) 

 

Updating:      

 
 )()()1/(ˆ)/(ˆ kkKkkxkkx     (17) 

Where ɛ(k) = z(k)- ẑ(k)  is the innovation vector.  

K(k) is called gain matrix, with is written as follow :   

  1
)1(ˆ)()1/()()()1/()(


 kRkHkkPkHkHkkPkK TT  

 

The variance corresponding to the update of )/(ˆ kkx  is 

expressed as follows: 

 

    )1/()()(  kkPHkKIkP    (18) 

 

The estimation of the time variant noises:  
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Where d(k-1) =  (1-λ)/(1-λk) , λ is called forgetting factor 

normally 0< λ <1. 

 

5. Fuzzy modelling of C-rate   

 
In order to estimate the effective SOC available in 

the battery we should also include the variation of Cn for 

each value of Ib, modelled by the add of the voltage loss 

(Vloss), see Fig.1 [7]. However, this losses is varying from 

profile of current to an other as illustrated in Tab.2; in 

fast fluctuations as driving an EV in urban city it will be 

more judicious to use the same C-rate for all the profiles 

or for each range of Ib by dimensioning C-rate versus an 

average value of Ib. In real life, this modelling choice 

made SOC less sensitive to the rude change of a driving 

regime (Start, Stop...). Author applications as space craft, 

the battery works predefined profiles around steady-

currents for considerable time so it will be better to use 

different Cn for each value of Ib. In order To make 
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tradeoff for all profiles we will model the variation in Cn 

by the Fuzzy logic to interpret various losses Vloss due to 

the different profiles. In Fig.02, membership of input (Ib) 

and output (Cn) illustrated which is modeled by mamdani 

fuzzy approach. 

 

 

Figure .2.  Membershipe function of input (Ib) and the output (Cn)   

6. Photovoltaic test bench  
 

By the realisation of a test bench we tried to be as close as 

possible to the reality and validate our researches in the 

domain of embedded photovoltaic system. The 

configuration depicted in Fig.3 is our batteries test bench, It 

consists on a power supply module “i.e., composed of 

photovoltaic solar array and a laboratory power supply” 

conditioned by à back-converter, a programmable load 

“i.e., a power resistor 1Ω supplied via a discharge 

regulator” to discharge the battery, a controller card 

connected to human machine interface (HMI) to set tests 

and data acquisition if needed. The measurements model 

exploits several sensors to monitor the battery (current, 

voltage and temperature sensors). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure .3.  Photovoltaic system Testbench 

A. Card controller :  

All of testbed modules are managed by developed 

controller card, illustrated in Fig.4, a round a Motorola 

core (68HC11F1 microcontroller).  

 

 
Figure .4.  Testbench controller card   

B. Software  

Software was developed in C++ language to create an 

independent and evolutionary Kalman or other kernel of 

estimation with the object to assure flexibility and 

easiness to switch from model to another, or from a 

battery technology to another one “e.g., LiIon or NiCd...” 

just with simple sets without touching in code source. 

The platform design (test bench/software) allow the test 

and validation of models, algorithms and management 

system “i.e., MBS” using different profiles of charge and 

discharge battery with different power system 

configuration, in this paper the data presented in Tab1 

and Tab2 are used to set the Fuzzy modelling and the 

initial parameters of our estimator  .   

 
Table I.- Battery manufacturer Specifications [8] 

C-rate  Ib QTotal VCharge  VCut-off Hour 

C20 1.20A 24.0 Ah 13.6V 10.5V 20h 

C10 2.23A 22.3 Ah 13.6V 10.5V 10h 

C3 6.4  A 19.2 Ah 13.6V 10.2V 3h 

C1 14.4A 14.4 Ah 13.6V 09.6V 1h 

 

Table II.- EKF initialization parameters values  [2,8]     

Parameter   Value Unit 

Rint (Rb0) 9.5  mΩ 

CBattery  27,87 kF 

w 0.1 Hz 

 

7. Tests,  results interpretation   

 
As plotted in Fig5, we start the pre-programmed test 

of discharge with half-full battery. It begins debiting a  

current of 0.15A for 3 minutes, followed series of fast 

picks of discharge that increase from 1A to 5A. The 

acceleration of depth of discharge (DOD) tests well the 

sensitivity of our estimator algorithm to the worst cases 

of Ib fast fluctuations found in some applications (e.g., 

transitory phases in spacecraft,  EV). Beyond, we attack 

with constant level of ICC = 2.3 A; in second time, with 

ICC = 4.5A for 31min. These profiles are illustrated by the 
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measured current battery “IB”.  During all test the battery 

“Vt” voltage decreases depending IB profile.  

 

 

Figure .5.  Evolution of the measurments (Ib, Vt) in discharge phase 

In Fig.6 are shown the internal parameters of battery, it’s 

clearer that when we increase the debited battery current, 

VP decreases following the Vt; also any relaxations “e.g., 

fast, slow, short or long” in Vt, imply a affine relationship 

between VP and Vt as proposed in (2). To rectify the “IB” 

current influence on Vt, the system model impose an 

augmentation of internal resistance Rint (RD, Rb). In RD is 

the electrolyte resistance augmentation because it’s 

depending of bp2+, SO4
2- concentration and mobility [1], 

and in Rb with is the apparent resistance in the electrodes. 

The polarized capacitance «Cp» interprets the chemical 

diffusion of battery, generally it becomes stable for regime 

(IB =ICC). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure .6.  The estimated parameters   

Unlike the pervious parameter, the SOC is less sensitive 

to the instantaneous and fast fluctuations of measurement 

parameters, it decreases with lag following the ICC 

profiles of discharge, because it’s a deeper parameter in 

our model, see Fig.1. During the interval which the 

applied ICC is 2.3V, the nominal capacity (Cn) is near to 

the C10 (see Tab1); with ICC = 4.5A, the nominal capacity 

is near C3, This Fuzzy approach is detected in the plot of 

SOC estimation by the smoothly change of slope to 

follow any changes in profile due to debited “IB”; also we 

remark that fast picks or scaled discharge doesn’t affect 

the SOC estimation.  

 

 

 

 

 

 

 

Figure .7.  The estimated SOC    

The illustrated innovation ɛ(k) in Fig.8,   is also used to 

update  the mathematical expectation of the system 

and  measurement noise  as explained in (20) and (22). 

In consequence the SOC estimating is less sensitive to 

poor initialisation of “Q” and “R”. also unmodelled  

parameters are injected in the system model noise.  

 

 

 

 

 

Figure .8.  The inovation error ε (k) 

8. Conclusion  
 

Compered to other models, the run-time dynamic 

model brings a new information about the evolution of 

SOC and the nominal capacity of the battery by the 

introduction of the modelled losses of capacity, in our 

case the Fuzzy Logic modelling smoothes Cn to give us 

the real battery capacity that could be debited for a 

different profiles. With AEKF estimator, our approach to 

estimate SOC is more accurate because it benefits of the 

newest time-variant parameters in the mathematical 

expectation (i.e., covariance) of the system noise and the 

observation noise, en consequence any temperature 

variation or disturbance at the sensors are taken into 

account that is not the case with a standard EKF 

estimator. In future work we will introduce the 

interpretation of the internal resistance as SOH indicator 

and the degradation of initial capacity of the battery due 

to the overcharge and deep discharge. 
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