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Abstract This paper deals with a method for determining the 

rating of roofs’ segments in urban areas regarding their suitability 

for the installation of different photovoltaic (PV) systems. In order 

to determine the received irradiance of individual roofs, their 

geometry is described based on LiDAR (Light Detection And 

Ranging) data, in order to estimate accurately the effect of 

shadowing and topography. The input irradiance is based on a 

Typical Meteorological Year (TMY), which is established over 

long-term irradiance measurements. The PV potential is then 

estimated by integrating estimated per-surface direct and 

anisotropic diffuse irradiances filtered with nonlinear efficiency 

characteristics of a given PV system. Afterwards, the roofs’ 

segments are rated based on the estimated PV potential from low 

to high suitability. The proposed method was applied over a large 

urban area scanned by airborne LiDAR, and validated with local 

power plant, where 96.49% agreement was reached. 
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1. Introduction 

 
The purchase price of photovoltaic (PV) systems has 

reduced significantly in the past few years [1], while grid 

parity is predicted to be reached worldwide throughout the 

next decade [2]. Nowadays, one of the main challenges is 

the estimation of solar and PV potentials over multiple 

buildings’ roofs within large-scale urban environment by 

considering all the influential factors of the urban context 

[3]. Solar potential represents the total solar irradiance that 

the observed surface receives in the given interval of 

observation (i.e. generally per-annum). Similarly, the 

photovoltaic (PV) potential is the amount of electric energy 

that the chosen PV system installed at a given surface can 

produce in the given interval.  

 

Since the recent advances of remote sensing data acquisition 

technologies, such as LiDAR (Light Detection And 

Ranging), new solar and PV potential estimation methods 

have been developed. LiDAR is an active remote sensing 

technology that can be mounted on an aircraft in order to 

scan the topography of a wide area. A 3D georeferenced 

surface point can be calculated by knowing the duration 

between emission and re-absorption of a given laser pulse 

that has hit the surface. Vast point cloud surface data can 

be acquired, as modern LiDAR scanners can send more 

than 200 000 laser pulses per second. Due to the increased 

availability of high-resolution topographical details, many 

methods have been developed for estimating the solar and 

PV potentials by using the given data. Their main 

differences lie in the way topological structure data is 

estimated over LiDAR point cloud and other remote 

sensing [5]-[13]. This is especially important to extract the 

per-surface topographical details (i.e. slope and aspect), as 

well as to estimate shadowing effects from nearby 

obstructions. State-of-the-art methods also consider 

shadowing from vegetation by either using semi-

transparent vegetation modelling [6] or light transmission 

estimation by using satellite-derived Leaf Area Index 

(LAI) [10]. Most of the state-of-the-art also consider only 

the constant efficiency of a PV module when estimating 

the PV potential [8]. Recently, it has been shown that it 

has bias in accuracy, in comparison to using the nonlinear 

efficiency characteristics of a PV module and a solar 

inverter [10]. 

 

In this paper we extend our previous work on PV potential 

estimation [10] over LiDAR data by proposing a novel 

rating of the resulting PV potential in order to measure the 

suitability of each roof segment. The input LiDAR data is 

structured into a 2.5D topological grid structure consisting 

of 2.5D cells in order to estimate fast shadowing and 

extract topographic features. The input long-term hourly 

measurements of global and diffuse irradiances by 

pyranometer are processed into a single Typical 

Meteorological Year (TMY). Perez anisotropic diffuse 

model is used to estimate the per-cell diffuse irradiance, 

while the direct irradiance is estimated by considering 

nearby shadowing effects and angle of incidence. The 

rooftops are segmented into areas with similar topographic 

properties. Then the PV potential is estimated for each 

rooftop segment by integrating the estimated per-cell 

irradiances throughout the year, while also considering 

instantaneous filtering with the nonlinear efficiency 
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characteristics of a given PV system. Finally, each rooftop 

is rated based on its estimated PV potential. 

 

The paper is structured as follows. the next section describes 

in detail the proposed method for PV potential estimation 

over segmented roofs by using LiDAR data. The third 

section presents the results over an airborne LiDAR scan of 

an urban area, as well as validation of the proposed 

methodology. The last section concludes this paper. 

 

2.  PV Potential Estimation 

 
At first a 2.5D grid 𝐺  topological structure is established 

over LiDAR data with a given cell resolution 𝑟𝑒𝑠𝐺 
2 [m2], as 

shown in Fig. 1. Each 2.5D cell 𝑐𝑖 ∈ 𝐺 has a height defined 

as 𝑐𝑖 . 𝑧 = max {𝑝1. 𝑧, 𝑝2 . 𝑧, … 𝑝𝑚. 𝑧}, where  𝑝𝑗 are LiDAR 

points within the given cell. Afterwards, the per-cell slope 

𝛽 and aspect 𝛾 angles are estimated for each cell from its 

normal vector, which is calculated by using the best-fit 

plane for all the neighbouring points [10]. In this paper, only 

buildings and terrain will be considered in the PV potential 

estimation, while vegetation and other type of obstructions 

will be disregarded. 

 

 
Figure 1: Example of a) classified LiDAR point cloud into 

buildings, terrain and vegetation, and b) the preprocessed point 

cloud into a 2.5D grid. 

 

Long-term global 𝐼 and diffuse 𝐼𝑑 irradiances on a 

horizontal surface are obtained from the long-term 

measurements with an hourly time-step from a nearby 

meteorological station equipped with pyranometer. Based 

on these measurements, a TMY is estimated by using the 

Sandia method [15].  

 

 
Figure 2: Yearly meteorological measurements of direct and 

diffuse irradiances for the time-line 2003-2012 [10]. 

 

In the continuation the TMY data is denoted with 𝐼 and 𝐼�̂�.  

The TMY is more robust to outliers and provides a clearer 

climatological data in comparison to averaging or 

estimating the median over the long-term measurements. 

The direct irradiance 𝐼�̂�  is estimated as 𝐼 − 𝐼�̂�, while the 

reflective component is not considered in this paper. Fig. 

2 shows an example of input measurements taken at a 

nearby meteorological station at Edvard Rusjan Airport 

(46°  28' 41.1'' N, 15° 40' 56.0'' E).  

 

During the PV potential estimation, the spherical position 

of the Sun is estimated by using the Solar Positioning 

Algorithm (SPA) [16]. This is then transformed into 

Cartesian coordinates, in order to enable fast shadowing 

over the 2.5D grid. Instantaneous shadowing  𝑆𝑖 of a cell 

𝑐𝑖 is estimated as [10]: 

 

𝑆𝑖 = {
1
0
𝑐𝑖 . 𝑧 ≤ 𝑐𝑗 . 𝑧 − 𝑑2(𝑐𝑖 , 𝑐𝑗)(q𝑧/√q𝑥

2 + q𝑦
2 )

𝑒𝑙𝑠𝑒
,    (1) 

 

where 𝑐𝑗 is the cell shadowing 𝑐𝑖, 𝑑2 is a 2D Euclidean 

distance between the given cells, while q denotes the Sun’s 

directional vector.  

 

The instantaneous direct and diffuse irradiances in time 

instance 𝑡 of a given cell 𝑐𝑖 are estimated as: 

 

𝐼𝑏𝑖(𝑡) = 𝑆𝑖(𝑡)𝐼�̂�(𝑡)𝑅𝑏𝑖[Wm
−2],                   (2) 

𝐼𝑑𝑖(𝑡) = 𝐼�̂�(𝑡)𝑅𝑑𝑖[Wm
−2],                    (3) 

 

where 𝑅𝑏𝑖 and 𝑅𝑑𝑖  are the correction factors that perturb 

the 𝐼�̂�  and 𝐼�̂� to an arbitrary oriented and sloped surface. 

𝑅𝑏𝑖 is estimated as: 

 

𝑅𝑏𝑖 =
cos (𝜃𝑖)

cos (𝜃𝑧)
,                                                                                (4) 

 

𝜃𝑖 and 𝜃𝑧 are the angle of incidence and zenith angles for 

a given cell 𝑐𝑖, respectively [17]. The 𝑅𝑑 factor for diffuse 

irradiance is estimated by using anisotropic Perez diffuse 

model [18], which considers the influence of horizon and 

circumsolar brightening, as well as isotropic irradiance 

from the rest of the sky. The PV potential is then estimated 

by integrating the filtered estimated irradiance for the 

given cell 𝑐𝑖: 
 

𝑃𝑉𝑖 = ∫ 𝜂(
𝑡2
𝑡1

𝐼𝑖(𝑡))𝐼𝑖  𝑑𝑡 [Whm
−2],                    (5) 

 

where 𝑡1 and 𝑡2 define a given time-span, 𝐼𝑖(𝑡) = 𝐼𝑏𝑖(𝑡) +

𝐼𝑑𝑖(𝑡), while 𝜂 is the nonlinear efficiency characteristics 

function of a given PV system based on [10], as shown in 

Fig. 3 for PV systems with three different PV modules 

types (i.e. A-Si for amorphous silicon, P-Si for 

polycrystalline silicon, and M-Si for monocrystalline 

silicon). The nonlinear efficiency characteristics of a PV 

system are obtained by combining individual PV modules 

(see Fig. 4) and a solar micro inverter (see Fig. 5) 

efficiency characteristics, which are based on least-

squares nonlinear regression over sampled measurements. 

It should be noted that Maximum Power Point Tracking 

(MPPT) is considered for all efficiency characteristics. 
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Figure 3: Nonlinear efficiency characteristics of a PV system 

equipped with A-Si, P-Si and M-Si types of PV modules and solar 

micro inverter [14]. 

 

 
Figure 4: Nonlinear efficiency characteristics of a given PV 

module dependent on input global irradiance [10]. 

 

 
Figure 5: Nonlinear efficiency characteristics of a given solar 

micro inverter dependent on the electrical energy production from 

a given PV module [10]. 

 

Once the PV potential is estimated, the segmentation is 

performed over all cells that belong to the same surface on 

the rooftop (i.e. minimal differences in slope, orientation 

and height). The segmentation is performed by using the 

Density-Based Spatial Clustering of Applications with 

Noise (DBSCAN)  clustering algorithm over cells’ 

positions and normal vectors as described in [14]. The rating 

of each 𝑠-th segment is then defined with straightforward 

thresholding: 

 

𝑅𝑇𝑠 =

{
 
 

 
 
𝑣𝑒𝑟𝑦 ℎ𝑖𝑔ℎ
ℎ𝑖𝑔ℎ

𝑚𝑒𝑑𝑖𝑢𝑚
𝑙𝑜𝑤

𝑣𝑒𝑟𝑦 𝑙𝑜𝑤

𝑃𝑉𝑠/𝑃𝑉𝑚𝑎𝑥 > 0.9
𝑃𝑉𝑠/𝑃𝑉𝑚𝑎𝑥 > 0.75
𝑃𝑉𝑠/𝑃𝑉𝑚𝑎𝑥 > 0.5
𝑃𝑉𝑠/𝑃𝑉𝑚𝑎𝑥 > 0.25
𝑃𝑉𝑠/𝑃𝑉𝑚𝑎𝑥 > 0.0

,        (6) 

where 𝑃𝑉𝑠 is the normalized sum of the PV potentials of 

all the cells belonging to segment 𝑠: 
 

𝑃𝑉𝑠 =
1

𝐴𝑠
∑ 𝑃𝑉𝑖  [Wh]
𝑛
𝑖=1 ,                     (7) 

 

where 𝐴𝑠 [m2] is the area of the given segment. 

𝑃𝑉𝑚𝑎𝑥  belongs to the segment with maximum PV 

potential. 

 

3. Results 

 
The proposed method was tested on an urban part of 

Maribor city, Slovenia (46° 33' 16'' N, 15° 38' 48'' E). Fig. 

6 shows the constructed 2.5D grid model over the 

considered location’s point cloud data obtained with 

airborne LiDAR. The per-cell resolution of the grid was 

set at 𝑟𝑒𝑠𝐺
2 = 0.25 m2. 

 

 

Figure 6: Visualization of the constructed 2.5D grid over the 

considered LiDAR scanned area. 

 

The input long-term hourly global and diffuse irradiance 

measurements (See Fig. 2) were used to construct the 

TMY. Before the PV estimation could be performed, the 

buildings rooftops were segmented into areas with equal 

topographic properties, as shown in Fig. 7. 

 

 

Figure 7: Segmentation of buildings rooftops in the 2.5D 

constructed grid. Each segment is coloured in a unique colour in 

comparison to its neighbouring segments. 

 

Fig. 8 shows the results from a temporal perspective, 

where the daily and cumulative values for all segments in 

the 2.5D grid are considered. As expected hypothetical PV 

systems on the given segments that are using PV modules 

with higher efficiency yield higher production. 

 

https://doi.org/10.24084/repqj15.323 368 RE&PQJ, Vol.1, No.15, April 2017



 
Figure 8: Estimation of a) daily PV potential and b) cumulative PV 

potential, of all the segments in the 2.5D grid by considering three 

different PV modules types. 

 

Moreover, the proposed method was validated with average 

measurements of electrical energy production at a local 

power plant at the University of Maribor, Faculty of 

Electrical Engineering and Computer Science (UM-FERI), 

which is included in the considered LiDAR scan (see Fig 

9a, b). The PV system at the power plant contains three 2.5 

kWp inverters, where each is equipped with 24 M-Si 110 

Wp PV modules. The results are shown in Fig. 9 c, where 

comparison was done with the average measured 

production 𝑃𝑉𝑠′ of segment  representing the power plant,  

and estimated 𝑃𝑉𝑠 with the proposed method. The total per-

annum agreement was estimated at 96.49%. 

  

 
Figure 9: a, b) Local solar power plant at UM-FERI and its PV 

system configuration [10]; c) Comparison of  estimated production 

with measured average per-annum production. 

Finally, Fig. 10 shows the results of the ranking of the 

segmented rooftops based on estimated per-annum PV 

potential, by considering the nonlinear efficiency 

characteristics all three aforementioned PV modules. 

The 𝑃𝑉𝑚𝑎𝑥  parameter was estimated by considering the 

segment with maximum PV potential with an M-Si type of 

PV module. Hence, the results of A-Si and P-Si in Fig. 9 

are relative to M-Si. As expected higher ranking is 

achieved by the rooftops segments that are unobstructed, 

oriented toward the Equator (towards the south in this 

case), and use M-Si type of PV module.  

 

 
Figure 10: Rating of PV potential for segmented roofs by 

considering a) A-Si, b) P-Si and c) M-Si types of PV module. 

Legend: VL=Very Low, L=Low, M=Medium, H=High, 

VH=Very High. 
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4.  Conclusion 

 
The paper deals with the rating of roofs’ segments in an 

urban area regarding their suitability for the installation of 

photovoltaic (PV) systems. The proposed method combines 

the classified Light Detection And Ranging (LiDAR) 

preprocessed data in a 2.5D grid model, Typical 

Meteorological Year (TMY) profile of direct and diffuse 

solar irradiance and nonlinear efficiency characteristics of a 

given PV system. The proposed rating of roofs regarding 

the PV potential for different PV module technologies is 

one of the basic steps that have to be performed in order to 

find optimal locations for the installation of a PV system in 

urban areas.    
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