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Abstract. Efficient placement of protective devices in electric 

power distribution networks is necessary in order to achieve a 

reliable system and provide continuous power supply to customers 

as long as possible. The islanded operation with distributed 

generation (DG) provides a way to reduce the energy not supplied 

(ENS) but the placement of protections, such as reclosers, is 

necessary in order to allow the system to achieve this mode of 

operation. This paper presents a multi-objective optimization 

method to place efficiently normally closed reclosers by using a 

constrained non-dominated sorting genetic algorithm (C-NSGA-II) 

to reduce SAIDI, ENS and investment costs. A co-simulation 

approach is used in such a way that the power system is modelled 

in PowerFactory, while MATLAB is used to implement the C-

NSGA-II. Then, a distribution test network is probed in simulation 

cases with different DG penetration levels, showing the efficiency 

of the proposed optimization method. Results show the importance 

of protective devices and DG in enhancing system reliability and 

reducing the energy not supplied to customers. 
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1. Nomenclature 

 
DG: Distributed Generation. 

ENS: Energy Not Supplied.  

SAIDI: System Average Interruption Duration Index 

NCR: Normally Closed Recloser 

SOOP: Single Objective Optimization Problem 

MOOP: Multi-Objective Optimization Problem 

NCD: Non-Constraint Dominated 

     : average customer interruption time of the load 

point  . 
   : amount of power not supplied when load point   
is disconnected. 

 : total number of loads in the network. 

    : Equivalent Uniform Annual Cost. 

   : Annual Operation Cost. 

  : Cost of a single recloser. 

  : Amount of placed reclosers. 

  : Discount rate. 

  : Lifetime of reclosers 

2. Introduction 

 
A priority of any distribution utility is to meet the 

requirements for safety, reliability and quality of supply. 

This can be achieved with the assist of some subsystems 

associated with the distribution network, where the 

protection system is the most important due to its capability 

for clearing and isolating faults. Concerning reliability, 

satisfying the load demand of customers with a continuous 

supply of energy is required to improve the reliability 

indices and reduce the energy not supplied (ENS). To make 

it possible, distribution automation is necessary to isolate 

faults on the network as quickly as possible, offering the 

possibility that distributed generation (DG) units can operate 

in islanded mode, an important function required for future 

smart grids [1]. 

 

In order to achieve a proper balance between financial 

resources and the technical requirements of the network, a 

cost/benefit analysis of the protection system must be 

considered. With these conditions, distribution utility has 

the task to meet two conflictive objectives: minimizing 

economical cost and maximizing reliability. Fulfilling the 

above objectives, the number and location of protective 

devices are critical variables. Thus, the contribution of this 

work is to deal with the planning of protection systems 

based on normally closed reclosers (NCRs). These devices 

are capable to isolate faulted sections and can be used to 

allow the islanded operation of networks with DG by 

establishing autonomous shares and achieving service 

restoration to certain loads of the distribution network. 

 

The optimal placement of protective devices has been 

studied as single objective (SOOP) and multi-objective 

(MOOP) optimization problems taking into account the DG 

capability of islanded operation. Considering the SOOP 

approach, the reactive tabu search algorithm (RTS) is 

implemented in [2] to solve a cost minimization problem 

modeled through a mixed integer non-linear programming 

with real and binary variables. Moreover, [3] presents a 

novel structure for the simple differential evolution 

algorithm (DE) to solve optimal recloser placement by 

minimizing an objective function composed by four 

https://doi.org/10.24084/repqj15.306 316 RE&PQJ, Vol.1, No.15, April 2017

fabianlopezch@outlook.com


reliability indices. Taking into account both optimal positions 

for DG and protection devices, in [4] the feeder is equipped 

with capacity-constrained DG, while a custom-tailored 

genetic algorithm is used to minimize a composite reliability 

index.  

 

The aforementioned studies address the reliability 

optimization problems with one of two approaches: i) 

minimize cost while satisfying reliability constraints, and ii) 

minimize customer interruptions subject to cost constraints 

[5]. Nevertheless, decision-making in planning of protection 

systems should be treated as a multi-objective optimization 

problem because of the conflictive maximization of 

reliability and minimization of costs. To work with the 

MOOP approach, two ways can be considered. On the one 

hand, the MOOP is turned into a SOOP by means of 

methods such as the weighted-sum approach and the ε-

constraint method [6]. However, such a transformation is 

often subjective to the decision-maker and it needs precise 

information about the trade-off relationship among 

objectives. On the other hand, a more reliable approach is to 

first find a Pareto-optimal set with multiple trade-off 

solutions, and then, chose one solution from the set using 

convenient information or assumptions about the system.  

 

Considering this approach, there are some works using the 

Pareto-optimal concept in planning of protection systems. A 

methodology for multi-objective optimization of protective 

devices allocation in order to minimize, SAIDI, SAIFI and 

MAIFIE indices simultaneously is proposed in [7]. The 

authors use the non-dominated sorting genetic algorithm 

(NSGA-II) in the search of the best solutions, in the same 

way as in [8], where the problem address with the 

minimization of the installation cost of sectionalizers while 

improving SAIDI and ECOST indices. With a different 

metaheuristic, the multi-objective ant colony system 

(MACS) is used in [9] for optimal placement of switching 

and protective devices in distribution systems by means of 

minimizing SAIFI, SAIDI, and total cost. 

 

In this paper, we propose a multi-objective optimization that 

uses the Pareto-dominance concept to minimize SAIDI, 

ENS, and cost investment simultaneously on a DG-

enhanced distribution network with islanded operation 

capabilities. The optimization procedure provides multiple 

trade-off solutions of efficient configurations with different 

amounts and placements of NCRs in the distribution 

network. Since the optimal placement of protective devices 

is a complex combinatorial problem with nonlinearity, 

discontinuity, and non-differentiability characteristics [4], 

[9], [10], solving the problem with traditional methods (e.g., 

linear and nonlinear programming) is difficult. Then, the use 

of metaheuristic methods such as the Non-dominated 

Sorting Genetic Algorithm (NSGA-II) [11] is an appropriate 

alternative to attain efficient solutions. To obtain a solution 

set belonging to a Pareto surface, we use a linked simulation 

with MATLAB and PowerFactory with the automatic data 

exchange procedure presented in [12].  

 

3.  General Optimization Problem 

 

A. Multi-objective Optimization and Pareto Optimality 

 

Even though many of the decision-making problems are 

handled as single objective problems, including all the 

aspects in a single function is difficult. Thus, a multi-

objective optimization problem can be defined with a 

vector of functions that includes a number of conflicting 

objectives to be maximized or minimized. Without loss of 

generality it is assumed that these objectives are to be 

minimized, as such the problem can be expressed by its 

general form as follow [6]: 

 
           ( )             

(1) 
             ( )                

    ( )   ,            

   
( )
      

( )
,            

 

where  ,   and   are the number of objective functions, 

inequality, and equality constraints, respectively, and 

  (           )
  is a vector of the   decision 

variables. The values   
( )

 and   
( )

 define the lower and 

upper bounds of the decision space that restricts the 

decision variables. 

 

In MOOPs where the objectives are in conflict to each 

other, there does not exists a single solution that 

simultaneously optimizes all objective functions. Instead, 

the most commonly adopted concept for optimality in 

MOOPs is the Pareto optimality [13], where a feasible 

vector of decision variables    is Pareto optimal if there 

does not exist another   such that   ( )    ( 
 ) for all 

          and   ( )    ( 
 ) for at least one  . Almost 

always, this approach gives a set of multiple trade-off 

solutions instead of a single solution. That set of solution is 

so-called the Pareto-optimal set and the vectors    
belonging to this set are so-called non-dominated 

solutions. The image of the Pareto-optimal set under the 

objective functions is the Pareto front.  

 

Since multiple solutions arise in MOOPs, a mechanism to 

assess their relative fitness must be established. Thus, the 

Pareto-dominance concept has widely been used to 

accomplish this task and guide the search towards the Pareto 

front. The conditions that must be true for a solution  ( ) to 

dominate other solution  ( ) are defined as follow [6]: 

 

1. The solution  ( ) is no worse than  ( ) in all 

objectives. 

2. The solution  ( ) is strictly better than  ( ) in at 

least one objective. 

 

Since the Pareto-dominance is a method to compare 

solutions in MOOPs, this concept is used in most multi-

objective optimization algorithms to search for non-

dominated solutions and achieve the Pareto front. 

 

B. Islanded Mode of DG 

 

The islanded operation capability is one of the most 

outstanding features of a DG-enhanced distribution 

network because it may offer a reliable and uninterrupted 

energy supply to certain loads. This feature allows the 

system to produce microgrids with the ability to operate in 

off-grid mode when faults arise in the utility grid. It can be 
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enabled by using switches and protective devices (e.g. 

NCRs). Although islanded mode is not widely accepted, 

implementation of intentional islanding of DG is a current 

research area covered by standards such as the IEEE 1547-

2003, continuously under consideration for future revisions 

[14]. 

 

Considering disturbances, when a fault arises in a DG-

enhanced distribution network, it may be energized from 

both the substation transformer and the DG whereby mis-

coordination between protective devices may emerge. This 

condition increases the difficulty in the reliability 

assessment. In this case, in normal conditions we assume 

that the distribution network works as a typical radial 

network, and that the DG only supplies power when a fault 

occurs in the feeder. This assumption is established given 

that the focus of this work is to analyze the improvement 

that DG can provide in system reliability. In consequence, 

for a fault anywhere on the network, only the closest 

recloser upstream to the fault can operate. 

 

With the aforementioned assumptions, the DG-enhanced 

radial feeder shown in Figure 1 is used as an example to 

illustrate the islanded operation mode. In normal conditions, 

the utility grid is the only source that supplies energy to 

loads L1, L2 and L3, while the DG does not provide power. 

Now, assume that a fault arise between busbars B1 and B2 

which causes the opening of the recloser (R). After this, 

loads L2 and L3 are isolated from the utility grid forming an 

island along with the DG unit. DG should be able to provide 

energy to total load LT = L2 + L3, while the network returns 

to normal conditions. When the island is established, one of 

the following cases may occur: i) the DG power supply 

(PDG) equals LT power consumption (PT), which need no 

actions and is the most efficient case, ii) PDG is not sufficient 

for meet PT (PDG < PT), so load shedding is required in order 

to keep the supply-demand balance and causing an increase 

in ENS, and iii) PDG exceeds PT (PDG > PT), so actions such 

as storing/dumping the excess of energy, or reducing 

generation should be considered. 

 

 
Figure 1. Illustrative DG-enhanced feeder. 

 

Taking into account the above, an inadequate placement of 

reclosers may result in the formation of inefficient islands 

either with excessive or insufficient generation, so the 

reliability provided by DG is not obtained. Hence, efficient 

placement of reclosers is required in order to ensure efficient 

islands, and in consequence, maximizing the benefits of 

using DG. 
 

4. Problem Formulation 
 

One of the purposes of the protective devices is to enhance 

certain reliability indices, procuring a continuous energy 

supply to loads. To accomplish this goal, investments must 

be done depending on the desired performance of the 

distribution utility. This work addresses SAIDI and ENS 

reduction in the optimization problem, along with a cost 

function that includes investment and operational costs of 

the protective system. SAIDI is selected since in addition 

to being the most common reliability index used by 

utilities, reliability investments based on this index alone 

have shown good improvements in SAIFI and MAIFIE too 

[5]. Also, since indices such as SAIFI depend on the 

interruptions that customers perceive, poor improvements 

could be achieved with the approach used in this research 

because interruptions can be experienced by customers 

while the islands are established. 

 

This problem has conflictive functions because a high 

improvement in reliability usually requires high 

investment, and inexpensive protection systems may lead 

to poor reliability indices. Therefore, there does not exist a 

single solution that simultaneously minimizes the three 

objective functions so a Pareto optimization is used to find 

a set of trade-off solutions. The MOOP is defined based on 

the general form described in (1): 

 

           ( )    ( )     ( ) 

(2)               
    ( )

       
    

    *   + 

where, 

      
∑         
 
   

∑   
 
   

           (3) 

    ∑            
 

   
 (4) 

                              [
  (    )

  

(    )
    

]     (5) 

 

Here,       is the average customer interruption time of 

the load point  ,    is the number of customers in load 

point    ,     is the amount of power not supplied when 

load point   is disconnected, and   is the total number of 

loads in the network. Considering costs,      is the 

equivalent uniform annual cost, where     is the annual 

operation cost,    is the cost of a single recloser,    is the 

amount of placed reclosers on the network and the 

expression in the brackets represents an annualization 

factor composed by a discount rate    and the lifetime of 

reclosers   . Also,         is the maximum      that 

the utility is willing to invest in reliability improvement. 

By last, the   decision variables composing the vector 

  (           )
  are binary variables which represent 

the existence (    ) or absence (    ) of a recloser in 

the     branch of the network.  

 

5. Constrained Non-Dominated Sorting 

Genetic Algorithm-II (C-NSGA-II) 
 

Problems related to optimal placement of protection 

devices have nonlinear, discontinuous, and non-

differentiable characteristics so the use of traditional 

methods may be infeasible. Furthermore, the outcome of 
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classical optimization methods is a single solution and not a 

set of solutions, as required in multi-objective problems. 

Thus, a feasible alternative to overcome this issue is to use a 

multi-objective evolutionary algorithm (MOEA). A MOEA 

use a population based approach along with the Pareto-

dominance concept to look for multiple non-dominated 

solutions. In this paper, we use the constrained non-

dominated sorting genetic algorithm (C-NSGA-II) [11] in 

order to search for solutions of the MOOP defined in (2). 

The C-NSGA-II use the same two key features of NSGA-II: 

i) a fast non-dominated sorting approach to sort each 

solution within a non-dominated front     (       ) 

based on an assigned rank  , and ii) a crowding distance 

metric used to preserve diversity among solutions. The main 

difference is that in C-NSGA-II the usual definition of 

domination is replaced by a constrain-domination condition. 

In this sense, to say that a solution  ( ) constrain-dominate 

a solution  ( ), any of the following conditions must be 

true: 

 

1. Solution  ( ) is feasible and solution  ( ) is not. 

2. Solution  ( )and  ( ) are both infeasible, but 

solution  ( ) has smaller constraint violation. 

3. Solution  ( ) and  ( ) are feasible, and  ( ) 
dominates the solution  ( ) in the usual domination 

sense defined in Section 3A. 

 

To illustrate these concepts, a pseudo-code of the proposed 

C-NSGA-II is shown in Algorithm 1. First, a random initial 

population    is created composed by individuals of    

chromosomes as in     (i.e., the decision vectors). Each 

binary string     is used to place reclosers in the distribution 

network based on the binary value of each decision variable 

(  ). Next, a reliability assessment is done in PowerFactory 

for each configuration to obtain the objective function 

values.  Then, the solutions in the population are sorted into 

  non-constrain-dominated (NCD) sets (   ) using the 

constrain-domination condition, such that, the front     is 

better that     if    . Also, crowding distance is calculated 

for solutions in each front    . After this, a selection process 

is applied to the population by means of a constrained 

tournament. With this selection operator, given two 

solutions  ( ) and   ( ), solution  ( ) is chosen if any of the 

following conditions are true: 

 

1. Solution  ( ) belongs to a better NCD set. 

2. Solutions  ( ) and  ( ) belong to the same NCD set, 

but solution  ( )has greater crowding distance value. 

 

The offspring population    is produced by regular genetic 

operators such as crossover and mutation. When the 

offspring population is obtained, a new population    
      is created. The objective functions evaluation with 

solutions in    is accomplish through reliability assessment 

again. Then,    is sorted in NCD fronts in order to obtain 

the population of the next generation. Thus, when    is 

sorted, the population      is filled by the elements inside of 

front     (the best front) only if the addition of the size of 

     and the size of      is less than   . The aforementioned 

process is repeated with subsequent fronts until the value of 

      size added to    size is greater than  . When it 

happens,      cannot include all solutions contained in   . 

Hence, only the   |    | solutions with the greatest 

crowding distance values from    are selected to complete 

the population of      . Finally, offspring population       

is created by applying constrained tournament selection, 

crossover and mutation operators to      population. 

 

The use of powerful tools offered by PowerFactory in the 

evaluation of the objective functions is a remarkable aspect 

of this work. Although optimization can be done in the 

same software, the programming platform of 

PowerFactory presents some difficulties and coding the 

optimization algorithm could become a hard task. In this 

sense, the co-simulation approach used in this work takes 

advantage of an easy programming environment such as 

MATLAB and its toolboxes to develop the optimization 

algorithm. 

 

6. Case Study and Results 
 

A. Case Study 

 

To assess the performance of the proposed optimization 

algorithm and show its application, we use the network at 

bus 6 of the Roy Billinton Test System (RBTS) 

implemented in PowerFactory (Figure 2) based on the 

Algorithm 1.      Constrained NSGA-II 

Initialize population:    (  
    

      
 )       

Objective functions evaluation: network reliability assessment 

for each solution in   . 
for          

   (  
 ) =      (  

 );      (  
 ) =    (  

 ); 

   (  
 ) =     (  

 ) 

End 

Fast non-constrain-dominated sorting: classify    into   

different non-constrain-dominated sets   .  

Local crowding distance assignment: For each solution   
belongs to   , assign a measure of the density of solutions in     
that surround solution  . 
Constrained Tournament Selection operator: chose the 

parents of the offspring population   . 
Crossover:    is created based on the chosen parents. 

Mutation: alters randomly solutions of    

for         (   ) 

 Combine populations:            

 Objective functions evaluation: reliability assessment for 

solutions in    

 Fast non-constrain dominated sorting: classify    into   

different non-constrain-dominated sets    . 

 Create new population:                

 while  |    |  |  |    

             ; 

      ; 

 End 

 Local crowding-sort of    : sort    in descending           

order according to the crowding distance of solutions. 

 Complete     : Include the (  |    |) solutions          

with the largest crowding distance values from    in     . 

            ,  (  |    |)- ; 

 Create new offspring population     : apply                   

constrained tournament selection, crossover and             

mutation operators to     to form     . 
End 
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system parameters presented in [15]. This network has 41 

load points with a peak load of 20 MW and two voltage 

levels (33 kV and 11 kV). The original radial network has 

been enhanced with DG penetration in order to make 

comparative simulations between the original network and 

the enhanced one with DG penetration of 20% and 60%. 

 

A failure model is required to accomplish the reliability 

analysis, so we define a stochastic failure model for the 

network components, using the data detailed in [16]. Here, the 

failure rates and repair times for transformers, breakers, 

busbars, and lines are listed for each voltage level. Regarding 

    , the values of    ,  𝑝,  𝑟 and    are set to 400 USD, 

18000 USD, 0.1 (10%), and 20 years, respectively, so the 

     for a single installed recloser is 2514 USD, and 

     𝑎  is set to 26000 USD. 

 

 
Figure. 2.  Distribution Network at Bus 6 of the RBTS with DG 

Penetration. 

 

B. Results 

 

The C-NSGA-II has been implemented in MATLAB for 

finding efficient placement of reclosers in the distribution 

network described above (Figure 2). The network is simulated 

in PowerFactory to calculate the objective functions (SAIDI 

and ENS) according to the stochastic model of failures and 

the power flows. The optimization procedure results in the set 

of solutions showed in Figure 3, which represent three 

simulation cases, one without DG penetration and two with 

different levels of DG penetration.  

 

For each simulation case, we have selected three 

representative non-constrain-dominated solutions presented in 

Table I. Between these solutions, “A” represents the cheapest 

solution (EUAC=$7542), but it produces less improvements 

in SAIDI and ENS. On the other hand, solution “C” has the 

best SAIDI and ENS values, but it requires the highest 

investment (EUAC=$25140), satisfying the constraint of the 

problem. By last, “B” represents an affordable solution 

(EUAC=$15084) with intermediate SAIDI and ENS values 

with respect to solutions “A” and “C”.  

 

Observing Figure 3, it is evident that SAIDI and ENS are 

non-linear functions of the number of recloser placed in the 

network. Even more, the extent of improvement in those 

indices, achieved by the addition of reclosers, decrease as the 

amount of reclosers increases. From this point of view, having 

multiple solutions is useful to analyze when increases in 

investment does not produce significant decrease in SAIDI 

and ENS values. Then, it is possible to find points where the 

benefits obtained by the addition of a recloser do not justify 

the investment.  

 

Another important result with the addition of DG and 

isolated mode capability is that solutions are displaced 

towards lower values of SAIDI and ENS as the DG 

penetration increases. 

 

  
Figure. 3.  Sets of Non-Constrain-Dominated Solutions 

 

Analyzing the positions in which reclosers are placed 

(Table I), it may be noted that feeders are segmented 

efficiently depending on the number of reclosers to be 

installed in the network.  

 

Regarding DG penetration, the optimization process seeks 

for solutions locating reclosers close to DG units with the 

aim to create microgrids. As an example, consider the 

solution “C” in which the recloser placed in the line-

segment l17 for case i. is relocated in line-segments l22 and 

l21 for cases ii. and iii, respectively. This allows the 

formation of an isolated zone (microgrid), with few loads 

downstream the recloser. When permanent faults arise 

upstream, a DG unit can supply energy inside this isolated 

zone, and thus, the system reliability is improved.  

 
Table I. – Samples of non-dominated solutions of C-NSGA-II 

 

Finally, by comparing solutions of the cases ii. and iii. 

having the same investment (i.e. similar EUAC), evidently 

case iii has solutions with better SAIDI and ENS values 

than those of case ii. As an example, comparing solution 

CASE 

 

SAIDI 

(h/a) 

ENS 

(MW/h) 

EUAC 

($) 
Reclosers Position 

i. 0% 

DG 

A 28.65 238.35 7542 l2,l30,l36 

B 19.15 173.23 15084 l2,l9,l14,l26,l30,l37 

C 15.41 132.13 25140 
l2,l9,l14,l17,l26,  

l29,l30,l32,l36,l40 

ii. 20% 

DG 

A 25.94 178.78 7542 l7,l30,l37 

B 18.70 122.57 15084 l3,l15,l26,l31,l39,l42 

C 12.97 88.16 25140 
l3,l9,l15,l22,l26,  

l30,l32,l36,l39,l42 

iii. 60% 

DG 

A 25.25 165.38 7542 l8,l30,l36 

B 17.70 101.44 15084 l7,l16,l27,l31,l36,l40 

C 12.57 81.04 25140 
l7,l9,l21,l27,l31,  

l32,l35,l36,l39,l41 
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“B” of case ii (SAIDI=18.70, ENS=122.57) with “B” of 

case iii (SAIDI=17.70, ENS=101.44), clearly the values for 

case iii are lower than those in case ii. Therefore, the 

solution of case iii is better than the one of case ii. In 

consequence, the aforementioned results show that best 

solutions can be found as the level of DG increases.    

 

7. Conclusion 
 

A methodology that uses a multi-objective approach has 

been used to address the problem of protection planning of 

distribution systems. The aim of this method is to find a set 

of multiple trade-off solution that determine efficient 

number and placement of reclosers in a distribution 

network. Those solutions are searched in a way that SAIFI, 

ENS and EUAC are minimized based on the Pareto 

dominance concept. 

 

The C-NSGA-II is implemented and applied in the 

optimization process to find a set of non-constrain-

dominated solutions satisfying the constraint established in 

the optimization problem. 

 

The importance of the protective devices and DG placement 

has been proved in enhancing reliability and reducing the 

energy not supplied by means of the results in the simulation 

cases. Moreover, the optimization of reclosers placement 

procure the creation of microgrids when islanded mode of 

DG is allowed. Besides, feeders are efficiently segmented 

based on the number of reclosers to be placed, and lower 

SAIDI and ENS values are achieved as the DG penetration 

level increases. Thus, better non-constrain-dominated 

solutions can be found. 

 

Coupling of two powerful tools, such as MATLAB and 

PowerFactory, shows a good approach to solve complex 

optimization problems related with power systems, as the 

proposed in this work. 

 

Future work includes developing a methodology to prove by 

simulation that the solutions found in the C-NSGA-II 

algorithm belong to the Pareto front and that there are no 

better solutions in the neighborhood of this front. 
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